Volatility filtering in estimation of kurtosis (and variance)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985998%3A_____%2F19%3A00505006" target="_blank" >RIV/67985998:_____/19:00505006 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.degruyter.com/downloadpdf/j/demo.2019.7.issue-1/demo-2019-0001/demo-2019-0001.pdf" target="_blank" >https://www.degruyter.com/downloadpdf/j/demo.2019.7.issue-1/demo-2019-0001/demo-2019-0001.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/demo-2019-0001" target="_blank" >10.1515/demo-2019-0001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Volatility filtering in estimation of kurtosis (and variance)
Popis výsledku v původním jazyce
The kurtosis of the distribution of financial returns characterized by high volatility persistence and thick tails is notoriously difficult to estimate precisely. We propose a simple but effective procedure of estimating the kurtosis coefficient (and variance) based on volatility filtering that uses a simple GARCH model. In addition to an estimate, the proposed algorithm issues a signal of whether the kurtosis (or variance) is finite or infinite. We also show how to construct confidence intervals around the proposed estimates. Simulations indicate that the proposed estimates are much less median biased than the usual method-of-moments estimates, their confidence intervals having much more precise coverage probabilities. The procedure alsoworks well when the underlying volatility process is not the one the filtering technique is based on. We illustrate how the algorithm works using several actual series of returns.
Název v anglickém jazyce
Volatility filtering in estimation of kurtosis (and variance)
Popis výsledku anglicky
The kurtosis of the distribution of financial returns characterized by high volatility persistence and thick tails is notoriously difficult to estimate precisely. We propose a simple but effective procedure of estimating the kurtosis coefficient (and variance) based on volatility filtering that uses a simple GARCH model. In addition to an estimate, the proposed algorithm issues a signal of whether the kurtosis (or variance) is finite or infinite. We also show how to construct confidence intervals around the proposed estimates. Simulations indicate that the proposed estimates are much less median biased than the usual method-of-moments estimates, their confidence intervals having much more precise coverage probabilities. The procedure alsoworks well when the underlying volatility process is not the one the filtering technique is based on. We illustrate how the algorithm works using several actual series of returns.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Dependence Modeling
ISSN
2300-2298
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
23
Strana od-do
1-23
Kód UT WoS článku
000459213300001
EID výsledku v databázi Scopus
2-s2.0-85062242090