Simple Markovian equilibria in dynamic spatial legislative bargaining
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985998%3A_____%2F20%3A00540205" target="_blank" >RIV/67985998:_____/20:00540205 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11640/20:00525430
Výsledek na webu
<a href="https://doi.org/10.1016/j.ejpoleco.2019.101816" target="_blank" >https://doi.org/10.1016/j.ejpoleco.2019.101816</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejpoleco.2019.101816" target="_blank" >10.1016/j.ejpoleco.2019.101816</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Simple Markovian equilibria in dynamic spatial legislative bargaining
Popis výsledku v původním jazyce
The paper proves, by construction, the existence of Markovian equilibria in a dynamic spatial legislative bargaining model. Players bargain over policies in an infinite horizon. In each period, a sequential protocol of proposal-making and voting, with random proposer recognitions and a simple majority, produces a policy that becomes the next period's status-quo, the status-quo is endogenous. The construction relies on simple strategies determined by strategic bliss points computed by the algorithm we provide. A strategic bliss point, the dynamic utility ideal, is a moderate policy relative to a bliss point, the static utility ideal. Moderation is strategic and germane to the dynamic environment, players moderate in order to constrain the future proposals of opponents. Moderation is a strategic substitute, when a player's opponents do moderate, she does not, and when they do not moderate, she does. We provide conditions under which the simple strategies induced by the strategic bliss points computed by the algorithm deliver a Stationary Markov Perfect equilibrium, and we prove its existence in generic games with impatient players and in symmetric games. Because the algorithm constructs all equilibria in simple strategies, we provide their general characterization, and we show their generic uniqueness.
Název v anglickém jazyce
Simple Markovian equilibria in dynamic spatial legislative bargaining
Popis výsledku anglicky
The paper proves, by construction, the existence of Markovian equilibria in a dynamic spatial legislative bargaining model. Players bargain over policies in an infinite horizon. In each period, a sequential protocol of proposal-making and voting, with random proposer recognitions and a simple majority, produces a policy that becomes the next period's status-quo, the status-quo is endogenous. The construction relies on simple strategies determined by strategic bliss points computed by the algorithm we provide. A strategic bliss point, the dynamic utility ideal, is a moderate policy relative to a bliss point, the static utility ideal. Moderation is strategic and germane to the dynamic environment, players moderate in order to constrain the future proposals of opponents. Moderation is a strategic substitute, when a player's opponents do moderate, she does not, and when they do not moderate, she does. We provide conditions under which the simple strategies induced by the strategic bliss points computed by the algorithm deliver a Stationary Markov Perfect equilibrium, and we prove its existence in generic games with impatient players and in symmetric games. Because the algorithm constructs all equilibria in simple strategies, we provide their general characterization, and we show their generic uniqueness.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50201 - Economic Theory
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Journal of Political Economy
ISSN
0176-2680
e-ISSN
—
Svazek periodika
63
Číslo periodika v rámci svazku
June
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
20
Strana od-do
101816
Kód UT WoS článku
000538156800001
EID výsledku v databázi Scopus
2-s2.0-85081245355