Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Coarse-Grained Simulations Complemented by Atomistic Molecular Dynamics Provide New Insights into Folding and Unfolding of Human Telomeric G-Quadruplexes

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081707%3A_____%2F16%3A00471940" target="_blank" >RIV/68081707:_____/16:00471940 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989592:15310/16:33161560

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1021/acs.jctc.6b00667" target="_blank" >http://dx.doi.org/10.1021/acs.jctc.6b00667</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jctc.6b00667" target="_blank" >10.1021/acs.jctc.6b00667</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Coarse-Grained Simulations Complemented by Atomistic Molecular Dynamics Provide New Insights into Folding and Unfolding of Human Telomeric G-Quadruplexes

  • Popis výsledku v původním jazyce

    G-quadruplexes are the most important non canonical DNA architectures. Many quadruplex-forming sequences, including the human telomeric sequence d(GGGTTA)(n), have been investigated due to their implications in cancer and other diseases, and because of their potential in DNA-based nanotechnology. Despite the availability of atomistic structural studies of folded G-quadruplexes, their folding pathways remain mysterious, and mutually contradictory models of folding coexist in the literature. Recent experiments convincingly demonstrated that G-quadruplex folding often takes days to reach thermodynamic equilibrium. Based on atomistic simulations of diverse classes of intermediates in G-quadruplex folding, we have suggested that the folding is an extremely multipathway process combining a kinetic partitioning mechanism with conformational diffusion. However, complete G-quadruplex folding is far beyond the time scale of atomistic simulations. Here we use high-resolution coarse-grained simulations to investigate potential unfolding intermediates, whose structural dynamics are then further explored with all-atom simulations. This multiscale approach indicates how various pathways are interconnected in a complex network. Spontaneous conversions between different folds are observed. We demonstrate the inability of simple order parameters, such as radius of gyration or the number of native H-bonds, to describe the folding landscape of the G-quadruplexes. Our study also provides information relevant to further development of the coarse grained force field.

  • Název v anglickém jazyce

    Coarse-Grained Simulations Complemented by Atomistic Molecular Dynamics Provide New Insights into Folding and Unfolding of Human Telomeric G-Quadruplexes

  • Popis výsledku anglicky

    G-quadruplexes are the most important non canonical DNA architectures. Many quadruplex-forming sequences, including the human telomeric sequence d(GGGTTA)(n), have been investigated due to their implications in cancer and other diseases, and because of their potential in DNA-based nanotechnology. Despite the availability of atomistic structural studies of folded G-quadruplexes, their folding pathways remain mysterious, and mutually contradictory models of folding coexist in the literature. Recent experiments convincingly demonstrated that G-quadruplex folding often takes days to reach thermodynamic equilibrium. Based on atomistic simulations of diverse classes of intermediates in G-quadruplex folding, we have suggested that the folding is an extremely multipathway process combining a kinetic partitioning mechanism with conformational diffusion. However, complete G-quadruplex folding is far beyond the time scale of atomistic simulations. Here we use high-resolution coarse-grained simulations to investigate potential unfolding intermediates, whose structural dynamics are then further explored with all-atom simulations. This multiscale approach indicates how various pathways are interconnected in a complex network. Spontaneous conversions between different folds are observed. We demonstrate the inability of simple order parameters, such as radius of gyration or the number of native H-bonds, to describe the folding landscape of the G-quadruplexes. Our study also provides information relevant to further development of the coarse grained force field.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BO - Biofyzika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Chemical Theory and Computation

  • ISSN

    1549-9618

  • e-ISSN

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    21

  • Strana od-do

    6077-6097

  • Kód UT WoS článku

    000389866500034

  • EID výsledku v databázi Scopus