UUCG RNA Tetraloop as a Formidable Force-Field Challenge for MD Simulations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081707%3A_____%2F20%3A00540054" target="_blank" >RIV/68081707:_____/20:00540054 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15310/20:73604594 RIV/00216224:14310/20:00117388
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.jctc.0c00801" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jctc.0c00801</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jctc.0c00801" target="_blank" >10.1021/acs.jctc.0c00801</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
UUCG RNA Tetraloop as a Formidable Force-Field Challenge for MD Simulations
Popis výsledku v původním jazyce
Explicit solvent atomistic molecular dynamics (MD) simulations represent an established technique to study structural dynamics of RNA molecules and an important complement for diverse experimental methods. However, performance of molecular mechanical (MM) force fields (Ifs) remains far from satisfactory even after decades of development, as apparent from a problematic structural description of some important RNA motifs. Actually, some of the smallest RNA molecules belong to the most challenging systems for MD simulations and, among them, the UUCG tetraloop is saliently difficult. We report a detailed analysis of UUCG MD ' simulations, depicting the sequence of events leading to the loss of 3finish the UUCG native state during MD simulations. The total amount of MD simulation data analyzed in this work is close to 1.3 ms. We identify molecular interactions, backbone conformations, and substates that are involved in the process. Then, we unravel specific ff deficiencies using diverse quantum mechanical/molecular mechanical (QM/MM) and QM calculations. Comparison between the MM and QM methods shows discrepancies in the description of the 5'-flanking phosphate moiety and both signature sugar-base interactions. Our work indicates that poor behavior of the UUCG tetraloop in simulations is a complex issue that cannot be attributed to one dominant and straightforwardly correctable factor. Instead, there is a concerted effect of multiple ff inaccuracies that are coupled and amplifying each other. We attempted to improve the simulation behavior by some carefully tailored interventions, but the results were still far from satisfactory, underlying the difficulties in development of accurate nucleic acid Ifs.
Název v anglickém jazyce
UUCG RNA Tetraloop as a Formidable Force-Field Challenge for MD Simulations
Popis výsledku anglicky
Explicit solvent atomistic molecular dynamics (MD) simulations represent an established technique to study structural dynamics of RNA molecules and an important complement for diverse experimental methods. However, performance of molecular mechanical (MM) force fields (Ifs) remains far from satisfactory even after decades of development, as apparent from a problematic structural description of some important RNA motifs. Actually, some of the smallest RNA molecules belong to the most challenging systems for MD simulations and, among them, the UUCG tetraloop is saliently difficult. We report a detailed analysis of UUCG MD ' simulations, depicting the sequence of events leading to the loss of 3finish the UUCG native state during MD simulations. The total amount of MD simulation data analyzed in this work is close to 1.3 ms. We identify molecular interactions, backbone conformations, and substates that are involved in the process. Then, we unravel specific ff deficiencies using diverse quantum mechanical/molecular mechanical (QM/MM) and QM calculations. Comparison between the MM and QM methods shows discrepancies in the description of the 5'-flanking phosphate moiety and both signature sugar-base interactions. Our work indicates that poor behavior of the UUCG tetraloop in simulations is a complex issue that cannot be attributed to one dominant and straightforwardly correctable factor. Instead, there is a concerted effect of multiple ff inaccuracies that are coupled and amplifying each other. We attempted to improve the simulation behavior by some carefully tailored interventions, but the results were still far from satisfactory, underlying the difficulties in development of accurate nucleic acid Ifs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Chemical Theory and Computation
ISSN
1549-9618
e-ISSN
—
Svazek periodika
16
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
7601-7617
Kód UT WoS článku
000598208600027
EID výsledku v databázi Scopus
2-s2.0-85097584157