Molecular dissociation and proton transfer in aqueous methane solution under an electric field
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081707%3A_____%2F21%3A00554408" target="_blank" >RIV/68081707:_____/21:00554408 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.rsc.org/en/content/articlelanding/2021/CP/D1CP04202E" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2021/CP/D1CP04202E</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d1cp04202e" target="_blank" >10.1039/d1cp04202e</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Molecular dissociation and proton transfer in aqueous methane solution under an electric field
Popis výsledku v původním jazyce
Methane-water mixtures are ubiquitous in our solar system and they have been the subject of a wide variety of experimental, theoretical, and computational studies aimed at understanding their behaviour under disparate thermodynamic scenarios, up to extreme planetary ice conditions of pressures and temperatures [Lee and Scandolo, Nat. Commun., 2011, 2, 185]. Although it is well known that electric fields, by interacting with condensed matter, can produce a range of catalytic effects which can be similar to those observed when material systems are pressurised, to the best of our knowledge, no quantum-based computational investigations of methane-water mixtures under an electric field have been reported so far. Here we present a study relying upon state-of-the-art ab initio molecular dynamics simulations where a liquid aqueous methane solution is exposed to strong oriented static and homogeneous electric fields. It turns out that a series of field-induced effects on the dipoles, polarisation, and the electronic structure of both methane and water molecules are recorded. Moreover, upon increasing the field strength, increasing fractions of water molecules are not only re-oriented towards the field direction, but are also dissociated by the field, leading to the release of oxonium and hydroxyde ions in the mixture. However, in contrast to what is observed upon pressurisation (similar to 50 GPa), where the presence of the water counterions triggers methane ionisation and other reactions, methane molecules preserve their integrity up to the strongest field explored (i.e., 0.50 V angstrom(-1)). Interestingly, neither the field-induced molecular dissociation of neat water (i.e., 0.30 V angstrom(-1)) nor the proton conductivity typical of pure aqueous samples at these field regimes (i.e., 1.3 S cm(-1)) are affected by the presence of hydrophobic interactions, at least in a methane-water mixture containing a molar fraction of 40% methane.
Název v anglickém jazyce
Molecular dissociation and proton transfer in aqueous methane solution under an electric field
Popis výsledku anglicky
Methane-water mixtures are ubiquitous in our solar system and they have been the subject of a wide variety of experimental, theoretical, and computational studies aimed at understanding their behaviour under disparate thermodynamic scenarios, up to extreme planetary ice conditions of pressures and temperatures [Lee and Scandolo, Nat. Commun., 2011, 2, 185]. Although it is well known that electric fields, by interacting with condensed matter, can produce a range of catalytic effects which can be similar to those observed when material systems are pressurised, to the best of our knowledge, no quantum-based computational investigations of methane-water mixtures under an electric field have been reported so far. Here we present a study relying upon state-of-the-art ab initio molecular dynamics simulations where a liquid aqueous methane solution is exposed to strong oriented static and homogeneous electric fields. It turns out that a series of field-induced effects on the dipoles, polarisation, and the electronic structure of both methane and water molecules are recorded. Moreover, upon increasing the field strength, increasing fractions of water molecules are not only re-oriented towards the field direction, but are also dissociated by the field, leading to the release of oxonium and hydroxyde ions in the mixture. However, in contrast to what is observed upon pressurisation (similar to 50 GPa), where the presence of the water counterions triggers methane ionisation and other reactions, methane molecules preserve their integrity up to the strongest field explored (i.e., 0.50 V angstrom(-1)). Interestingly, neither the field-induced molecular dissociation of neat water (i.e., 0.30 V angstrom(-1)) nor the proton conductivity typical of pure aqueous samples at these field regimes (i.e., 1.3 S cm(-1)) are affected by the presence of hydrophobic interactions, at least in a methane-water mixture containing a molar fraction of 40% methane.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Chemistry Chemical Physics
ISSN
1463-9076
e-ISSN
1463-9084
Svazek periodika
23
Číslo periodika v rámci svazku
45
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
25649-25657
Kód UT WoS článku
000718638100001
EID výsledku v databázi Scopus
2-s2.0-85120467741