Single-cell RNA sequencing analysis of T helper cell differentiation and heterogeneity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081707%3A_____%2F22%3A00559610" target="_blank" >RIV/68081707:_____/22:00559610 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/65269705:_____/22:00076202 RIV/00216224:14310/22:00127718
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0167488922001136?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167488922001136?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.bbamcr.2022.119321" target="_blank" >10.1016/j.bbamcr.2022.119321</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Single-cell RNA sequencing analysis of T helper cell differentiation and heterogeneity
Popis výsledku v původním jazyce
Single-cell transcriptomics has emerged as a powerful tool to investigate cells' biological landscape and focus on the expression profile of individual cells. Major advantage of this approach is an analysis of highly complex and heterogeneous cell populations, such as a specific subpopulation of T helper cells that are known to differentiate into distinct subpopulations. The need for distinguishing the specific expression profile is even more important considering the T cell plasticity. However, importantly, the universal pipelines for single-cell analysis are usually not sufficient for every cell type. Here, the aims are to analyze the diversity of T cell phenotypes employing classical in vitro cytokine-mediated differentiation of human T cells isolated from human peripheral blood by single-cell transcriptomic approach with support of labelled antibodies and a comprehensive bioinformatics analysis using combination of Seurat, Nebulosa, GGplot and others. The results showed high expression similar-ities between Th1 and Th17 phenotype and very distinct Th2 expression profile. In a case of Th2 highly specific marker genes SPINT2, TRIB3 and CST7 were expressed. Overall, our results demonstrate how donor difference, Th plasticity and cell cycle influence the expression profiles of distinct T cell populations. The results could help to better understand the importance of each step of the analysis when working with T cell single-cell data and observe the results in a more practical way by using our analyzed datasets.
Název v anglickém jazyce
Single-cell RNA sequencing analysis of T helper cell differentiation and heterogeneity
Popis výsledku anglicky
Single-cell transcriptomics has emerged as a powerful tool to investigate cells' biological landscape and focus on the expression profile of individual cells. Major advantage of this approach is an analysis of highly complex and heterogeneous cell populations, such as a specific subpopulation of T helper cells that are known to differentiate into distinct subpopulations. The need for distinguishing the specific expression profile is even more important considering the T cell plasticity. However, importantly, the universal pipelines for single-cell analysis are usually not sufficient for every cell type. Here, the aims are to analyze the diversity of T cell phenotypes employing classical in vitro cytokine-mediated differentiation of human T cells isolated from human peripheral blood by single-cell transcriptomic approach with support of labelled antibodies and a comprehensive bioinformatics analysis using combination of Seurat, Nebulosa, GGplot and others. The results showed high expression similar-ities between Th1 and Th17 phenotype and very distinct Th2 expression profile. In a case of Th2 highly specific marker genes SPINT2, TRIB3 and CST7 were expressed. Overall, our results demonstrate how donor difference, Th plasticity and cell cycle influence the expression profiles of distinct T cell populations. The results could help to better understand the importance of each step of the analysis when working with T cell single-cell data and observe the results in a more practical way by using our analyzed datasets.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10608 - Biochemistry and molecular biology
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biochimica Et Biophysica Acta-Molecular Cell Research
ISSN
0167-4889
e-ISSN
1879-2596
Svazek periodika
1869
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
17
Strana od-do
119321
Kód UT WoS článku
000828701100002
EID výsledku v databázi Scopus
2-s2.0-85134466656