Atomistic Picture of Opening-Closing Dynamics of DNA Holliday Junction Obtained by Molecular Simulations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081707%3A_____%2F23%3A00572134" target="_blank" >RIV/68081707:_____/23:00572134 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14740/23:00130996 RIV/61989592:15640/23:73621693 RIV/61989100:27740/23:10254092
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.jcim.3c00358" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jcim.3c00358</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jcim.3c00358" target="_blank" >10.1021/acs.jcim.3c00358</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Atomistic Picture of Opening-Closing Dynamics of DNA Holliday Junction Obtained by Molecular Simulations
Popis výsledku v původním jazyce
Holliday junction (HJ) is a noncanonical four-way DNA structure with a prominent role in DNA repair, recombination, and DNA nanotechnology. By rearranging its four arms, HJ can adopt either closed or open state. With enzymes typically recognizing only a single state, acquiring detailed knowledge of the rearrangement process is an important step toward fully understanding the biological function of HJs. Here, we carried out standard all-atom molecular dynamics (MD) simulations of the spontaneous opening-closing transitions, which revealed complex conformational transitions of HJs with an involvement of previously unconsidered half-closed inter-mediates. Detailed free-energy landscapes of the transitions were obtained by sophisticated enhanced sampling simulations. Because the force field overstabilizes the closed conformation of HJs, we developed a system-specific modification which for the first time allows the observation of spontaneous opening-closing HJ transitions in unbiased MD simulations and opens the possibilities for more accurate HJ computational studies of biological processes and nanomaterials.
Název v anglickém jazyce
Atomistic Picture of Opening-Closing Dynamics of DNA Holliday Junction Obtained by Molecular Simulations
Popis výsledku anglicky
Holliday junction (HJ) is a noncanonical four-way DNA structure with a prominent role in DNA repair, recombination, and DNA nanotechnology. By rearranging its four arms, HJ can adopt either closed or open state. With enzymes typically recognizing only a single state, acquiring detailed knowledge of the rearrangement process is an important step toward fully understanding the biological function of HJs. Here, we carried out standard all-atom molecular dynamics (MD) simulations of the spontaneous opening-closing transitions, which revealed complex conformational transitions of HJs with an involvement of previously unconsidered half-closed inter-mediates. Detailed free-energy landscapes of the transitions were obtained by sophisticated enhanced sampling simulations. Because the force field overstabilizes the closed conformation of HJs, we developed a system-specific modification which for the first time allows the observation of spontaneous opening-closing HJ transitions in unbiased MD simulations and opens the possibilities for more accurate HJ computational studies of biological processes and nanomaterials.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10402 - Inorganic and nuclear chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-23718S" target="_blank" >GA21-23718S: Studium fascinující fyzikální chemie DNA pomocí pokročilých výpočetních metod</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Chemical Information and Modeling
ISSN
1549-9596
e-ISSN
1549-960X
Svazek periodika
63
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
2794-2809
Kód UT WoS článku
000981735000001
EID výsledku v databázi Scopus
2-s2.0-85156230843