Photoinduced charge separation and DNA self-repair depend on sequence directionality and stacking pattern
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081707%3A_____%2F24%3A00600749" target="_blank" >RIV/68081707:_____/24:00600749 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15640/24:73624534
Výsledek na webu
<a href="https://pubs.rsc.org/en/content/articlelanding/2024/sc/d3sc04971j" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2024/sc/d3sc04971j</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d3sc04971j" target="_blank" >10.1039/d3sc04971j</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Photoinduced charge separation and DNA self-repair depend on sequence directionality and stacking pattern
Popis výsledku v původním jazyce
Charge separation is one of the most common consequences of the absorption of UV light by DNA. Recently, it has been shown that this process can enable efficient self-repair of cyclobutane pyrimidine dimers (CPDs) in specific short DNA oligomers such as the GAT00000000000000000000000000000000111111110000000011111111000000000000000000000000T sequence. The mechanism was characterized as sequential electron transfer through the nucleobase stack which is controlled by the redox potentials of nucleobases and their sequence. Here, we demonstrate that the inverse sequence TTAG promotes self-repair with higher quantum yields (0.58 +/- 0.23%) than GATT (0.44 +/- 0.18%) in a comparative study involving UV-irradiation experiments. After extended exposure to UV irradiation, a photostationary equilibrium between self-repair and damage formation is reached at 33 +/- 13% for GATT and at 40 +/- 16% for TTAG, which corresponds to the maximum total yield of self-repair. Molecular dynamics and quantum mechanics/molecular mechanics (QM/MM) simulations allowed us to assign this disparity to better stacking overlap between the G and A bases, which lowers the energies of the key A-G+ charge transfer state in the dominant conformers of the TTAG tetramer. These conformational differences also hinder alternative photorelaxation pathways of the TTAG tetranucleotide, which otherwise compete with the sequential electron transfer mechanism responsible for CPD self-repair. Overall, we demonstrate that photoinduced electron transfer is strongly dependent on conformation and the availability of alternative photodeactivation mechanisms. This knowledge can be used in the identification and prediction of canonical and modified DNA sequences exhibiting efficient electron transfer. It also further contributes to our understanding of DNA self-repair and its potential role in the photochemical selection of the most photostable sequences on the early Earth.
Název v anglickém jazyce
Photoinduced charge separation and DNA self-repair depend on sequence directionality and stacking pattern
Popis výsledku anglicky
Charge separation is one of the most common consequences of the absorption of UV light by DNA. Recently, it has been shown that this process can enable efficient self-repair of cyclobutane pyrimidine dimers (CPDs) in specific short DNA oligomers such as the GAT00000000000000000000000000000000111111110000000011111111000000000000000000000000T sequence. The mechanism was characterized as sequential electron transfer through the nucleobase stack which is controlled by the redox potentials of nucleobases and their sequence. Here, we demonstrate that the inverse sequence TTAG promotes self-repair with higher quantum yields (0.58 +/- 0.23%) than GATT (0.44 +/- 0.18%) in a comparative study involving UV-irradiation experiments. After extended exposure to UV irradiation, a photostationary equilibrium between self-repair and damage formation is reached at 33 +/- 13% for GATT and at 40 +/- 16% for TTAG, which corresponds to the maximum total yield of self-repair. Molecular dynamics and quantum mechanics/molecular mechanics (QM/MM) simulations allowed us to assign this disparity to better stacking overlap between the G and A bases, which lowers the energies of the key A-G+ charge transfer state in the dominant conformers of the TTAG tetramer. These conformational differences also hinder alternative photorelaxation pathways of the TTAG tetranucleotide, which otherwise compete with the sequential electron transfer mechanism responsible for CPD self-repair. Overall, we demonstrate that photoinduced electron transfer is strongly dependent on conformation and the availability of alternative photodeactivation mechanisms. This knowledge can be used in the identification and prediction of canonical and modified DNA sequences exhibiting efficient electron transfer. It also further contributes to our understanding of DNA self-repair and its potential role in the photochemical selection of the most photostable sequences on the early Earth.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10401 - Organic chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-23718S" target="_blank" >GA21-23718S: Studium fascinující fyzikální chemie DNA pomocí pokročilých výpočetních metod</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemical Science
ISSN
2041-6520
e-ISSN
2041-6539
Svazek periodika
15
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
2158-2166
Kód UT WoS článku
001138279200001
EID výsledku v databázi Scopus
2-s2.0-85182366023