Synergy of atom-probe structural data and quantum-mechanical calculations in a theory-guided design of extreme-stiffness superlattices containing metastable phases
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F15%3A00450464" target="_blank" >RIV/68081723:_____/15:00450464 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1088/1367-2630/17/9/093004" target="_blank" >http://dx.doi.org/10.1088/1367-2630/17/9/093004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1367-2630/17/9/093004" target="_blank" >10.1088/1367-2630/17/9/093004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Synergy of atom-probe structural data and quantum-mechanical calculations in a theory-guided design of extreme-stiffness superlattices containing metastable phases
Popis výsledku v původním jazyce
A theory-guided materials design of nano-scaled superlattices containing metastable phases is critically important for future development of advanced lamellar composites with application-dictated stiffness and hardness. Our study combining theoretical and experimental methods exemplifies the strength of this approach for the case of the elastic properties of AlN/CrN superlattices that were deposited by reactive radio-frequency magnetron sputtering with a bilayer period of 4 nm. Importantly, CrN stabilizes AlN in ametastable B1 (rock salt) cubic phase only in the form of a layer that is very thin, up to a few nanometers. Due to the fact that B1-AlN crystals do not exist as bulk materials, experimental data for this phase are not available. Therefore, quantum-mechanical calculations have been applied. The ab initio predicted Young?s modulus (428 GPa) along the [001] direction is in excellent agreement with measured nano-indentation values (408 +/- 32 GPa). We have also tested predictions
Název v anglickém jazyce
Synergy of atom-probe structural data and quantum-mechanical calculations in a theory-guided design of extreme-stiffness superlattices containing metastable phases
Popis výsledku anglicky
A theory-guided materials design of nano-scaled superlattices containing metastable phases is critically important for future development of advanced lamellar composites with application-dictated stiffness and hardness. Our study combining theoretical and experimental methods exemplifies the strength of this approach for the case of the elastic properties of AlN/CrN superlattices that were deposited by reactive radio-frequency magnetron sputtering with a bilayer period of 4 nm. Importantly, CrN stabilizes AlN in ametastable B1 (rock salt) cubic phase only in the form of a layer that is very thin, up to a few nanometers. Due to the fact that B1-AlN crystals do not exist as bulk materials, experimental data for this phase are not available. Therefore, quantum-mechanical calculations have been applied. The ab initio predicted Young?s modulus (428 GPa) along the [001] direction is in excellent agreement with measured nano-indentation values (408 +/- 32 GPa). We have also tested predictions
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BM - Fyzika pevných látek a magnetismus
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
New Journal of Physics
ISSN
1367-2630
e-ISSN
—
Svazek periodika
17
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
9
Strana od-do
"Art. n. 093004"
Kód UT WoS článku
000367355100004
EID výsledku v databázi Scopus
2-s2.0-84943558895