Creep study of mechanisms involved in low-temperature superplasticity of UFG Ti-6Al-4V processed by SPD
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F16%3A00463463" target="_blank" >RIV/68081723:_____/16:00463463 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.matchar.2016.04.007" target="_blank" >http://dx.doi.org/10.1016/j.matchar.2016.04.007</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.matchar.2016.04.007" target="_blank" >10.1016/j.matchar.2016.04.007</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Creep study of mechanisms involved in low-temperature superplasticity of UFG Ti-6Al-4V processed by SPD
Popis výsledku v původním jazyce
The deformation kinetics of ultrafine-grained Ti-6Al-4V with mean (sub)grain size about 150 nm (produced by isothermal multiaxial forging) and superplastic properties at the relatively low temperature of 873 K was investigated in compression and tension over a large range of strain rates from 10- 7 to 10- 2 s- 1. Electron microscopic observations showed that the grains coarsen during deformation towards the quasi-stationary spacing wqs of strain induced boundaries. In spite of the grain coarsening the grains were generally smaller than wqs allowing high-angle boundaries to dominate the quasi-stationary strength. Texture measurements indicate that dislocation glide plays a large role in deformation. Glide in this alloy is significantly influenced by solid solution strengthening leading to a stress sensitivity of strain rate of n = 3. The present ultrafine-grained Ti alloy displays a stress sensitivity exponent n = 2 over an extended stress range where its superplastic behavior is optimal. While the deformation kinetics of present ultrafine-grained Ti alloy can be roughly explained by the traditional formula for superplastic flow, the significant discrepancy to the measured values suggests that solid solution strengthening must be taken into account to get a complete insight. © 2016 Elsevier Inc. All rights reserved.
Název v anglickém jazyce
Creep study of mechanisms involved in low-temperature superplasticity of UFG Ti-6Al-4V processed by SPD
Popis výsledku anglicky
The deformation kinetics of ultrafine-grained Ti-6Al-4V with mean (sub)grain size about 150 nm (produced by isothermal multiaxial forging) and superplastic properties at the relatively low temperature of 873 K was investigated in compression and tension over a large range of strain rates from 10- 7 to 10- 2 s- 1. Electron microscopic observations showed that the grains coarsen during deformation towards the quasi-stationary spacing wqs of strain induced boundaries. In spite of the grain coarsening the grains were generally smaller than wqs allowing high-angle boundaries to dominate the quasi-stationary strength. Texture measurements indicate that dislocation glide plays a large role in deformation. Glide in this alloy is significantly influenced by solid solution strengthening leading to a stress sensitivity of strain rate of n = 3. The present ultrafine-grained Ti alloy displays a stress sensitivity exponent n = 2 over an extended stress range where its superplastic behavior is optimal. While the deformation kinetics of present ultrafine-grained Ti alloy can be roughly explained by the traditional formula for superplastic flow, the significant discrepancy to the measured values suggests that solid solution strengthening must be taken into account to get a complete insight. © 2016 Elsevier Inc. All rights reserved.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JG - Hutnictví, kovové materiály
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0068" target="_blank" >ED1.1.00/02.0068: CEITEC - central european institute of technology</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials Characterization
ISSN
1044-5803
e-ISSN
—
Svazek periodika
116
Číslo periodika v rámci svazku
JUN
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
6
Strana od-do
84-90
Kód UT WoS článku
000376698800011
EID výsledku v databázi Scopus
2-s2.0-84964526668