Strain Rate Contribution due to Dynamic Recovery of Ultrafine-Grained Cu–Zr as Evidenced by Load Reductions during Quasi-Stationary Deformation at 0.5 Tm
Popis výsledku
Identifikátory výsledku
Kód výsledku v IS VaVaI
Výsledek na webu
DOI - Digital Object Identifier
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Strain Rate Contribution due to Dynamic Recovery of Ultrafine-Grained Cu–Zr as Evidenced by Load Reductions during Quasi-Stationary Deformation at 0.5 Tm
Popis výsledku v původním jazyce
During quasi-stationary tensile deformation of ultrafine-grained Cu-0.2 mass%Zr at 673 K and a deformation rate of about 10−4 s−1 load changes were performed. Reductions of relative load by more than about 25% initiate anelastic back flow. Subsequently, the creep rate turns positive again and goes through a relative maximum. This is interpreted by a strain rate component ϵ ̇- nassociated with dynamic recovery of dislocations. Back extrapolation indicates that ϵ ̇- contributes the same fraction of (20 ± 10)% to the quasi-stationary strain rate that has been reported for coarse-grained materials with high fraction of low-angle boundaries, this suggests that dynamic recovery of dislocations is generally mediated by boundaries. The influence of anelastic back flow on ϵ ̇- is discussed. Comparison of ϵ ̇- to the quasi-stationary rate points to enhancement of dynamic recovery by internal stresses. Subtraction of ϵ ̇- from the total rate yields the rate component ϵ ̇+ related with generation and storage of dislocations, its activation volume is in the order expected from the classical theory of thermal glide.
Název v anglickém jazyce
Strain Rate Contribution due to Dynamic Recovery of Ultrafine-Grained Cu–Zr as Evidenced by Load Reductions during Quasi-Stationary Deformation at 0.5 Tm
Popis výsledku anglicky
During quasi-stationary tensile deformation of ultrafine-grained Cu-0.2 mass%Zr at 673 K and a deformation rate of about 10−4 s−1 load changes were performed. Reductions of relative load by more than about 25% initiate anelastic back flow. Subsequently, the creep rate turns positive again and goes through a relative maximum. This is interpreted by a strain rate component ϵ ̇- nassociated with dynamic recovery of dislocations. Back extrapolation indicates that ϵ ̇- contributes the same fraction of (20 ± 10)% to the quasi-stationary strain rate that has been reported for coarse-grained materials with high fraction of low-angle boundaries, this suggests that dynamic recovery of dislocations is generally mediated by boundaries. The influence of anelastic back flow on ϵ ̇- is discussed. Comparison of ϵ ̇- to the quasi-stationary rate points to enhancement of dynamic recovery by internal stresses. Subtraction of ϵ ̇- from the total rate yields the rate component ϵ ̇+ related with generation and storage of dislocations, its activation volume is in the order expected from the classical theory of thermal glide.
Klasifikace
Druh
Jimp - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Metals
ISSN
2075-4701
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
17
Strana od-do
1150
Kód UT WoS článku
000504411600018
EID výsledku v databázi Scopus
2-s2.0-85078134846
Základní informace
Druh výsledku
Jimp - Článek v periodiku v databázi Web of Science
OECD FORD
Materials engineering
Rok uplatnění
2019