A new treatment of transient grain growth
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F16%3A00463998" target="_blank" >RIV/68081723:_____/16:00463998 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.actamat.2016.05.020" target="_blank" >http://dx.doi.org/10.1016/j.actamat.2016.05.020</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.actamat.2016.05.020" target="_blank" >10.1016/j.actamat.2016.05.020</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A new treatment of transient grain growth
Popis výsledku v původním jazyce
The grain radius R distribution ftmction f(R, t) with R-c(t) as critical grain radius is formulated, inspired by the Hillert self-similar solution concept, as product of 1/R-c(4) and of a shape function g(rho, t) as function of the dimension-free radius rho = R/R-c and time t, contrarily to the Hillert self-similar solution concept with time-independent g(rho). The evolution equations for R-c(t) as well as for g(rho, t) are derived, guaranteeing that the total volume of grains remains constant. The solution of the resulting integro-differential equations for R-c(t) and g(rho, t) is performed by standard numerical tools. Remarkable advantages of this semi-analytical concept are: (i) the concept is a deterministic one, (ii) its computational treatment is very efficient and (iii) the shape function g(rho, t) remains localized in a fixed interval of rho. The shape function g(rho, t) evolves towards the well-known Hillert self-similar distribution, which is demonstrated for two initial shape functions (one of them is triangular). Also a study on "nearly" self-similar distribution functions proposed as useful approximations of experimental data is presented.
Název v anglickém jazyce
A new treatment of transient grain growth
Popis výsledku anglicky
The grain radius R distribution ftmction f(R, t) with R-c(t) as critical grain radius is formulated, inspired by the Hillert self-similar solution concept, as product of 1/R-c(4) and of a shape function g(rho, t) as function of the dimension-free radius rho = R/R-c and time t, contrarily to the Hillert self-similar solution concept with time-independent g(rho). The evolution equations for R-c(t) as well as for g(rho, t) are derived, guaranteeing that the total volume of grains remains constant. The solution of the resulting integro-differential equations for R-c(t) and g(rho, t) is performed by standard numerical tools. Remarkable advantages of this semi-analytical concept are: (i) the concept is a deterministic one, (ii) its computational treatment is very efficient and (iii) the shape function g(rho, t) remains localized in a fixed interval of rho. The shape function g(rho, t) evolves towards the well-known Hillert self-similar distribution, which is demonstrated for two initial shape functions (one of them is triangular). Also a study on "nearly" self-similar distribution functions proposed as useful approximations of experimental data is presented.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BJ - Termodynamika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-06390S" target="_blank" >GA15-06390S: Využití teoretických a experimentálních přístupů ke slinování pro získání optimální mikrostruktury a vlastností pokročilých keramických materiálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Materialia
ISSN
1359-6454
e-ISSN
—
Svazek periodika
115
Číslo periodika v rámci svazku
AUG
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
6
Strana od-do
442-447
Kód UT WoS článku
000380083400045
EID výsledku v databázi Scopus
2-s2.0-84977593421