Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The influence of non-singular terms on the precision of stress description near a sharp material inclusion tip

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F17%3A00480110" target="_blank" >RIV/68081723:_____/17:00480110 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216305:26620/17:PU127321

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.tafmec.2017.03.007" target="_blank" >http://dx.doi.org/10.1016/j.tafmec.2017.03.007</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.tafmec.2017.03.007" target="_blank" >10.1016/j.tafmec.2017.03.007</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The influence of non-singular terms on the precision of stress description near a sharp material inclusion tip

  • Popis výsledku v původním jazyce

    A theoretical elastic stress field in the vicinity of a sharp material inclusion tip has a singular character. The power of a stress singularity, characterized by the exponents of the singularity, is different from the power of a singularity in the case of a crack in homogenous media. Stress distribution near the singular point can be described by an asymptotic expansion. The series consists of singular and non-singular terms, depending on the eigenvalue 2 in the exponent of each term. The singular terms are characterized by 0 < R(lambda) < 1, while the relation 1 < R(lambda) applies to non-singular terms. A sharp material inclusion is modelled as a special case of a multi-material junction, a bi-material junction. A method to calculate eigenvalues for a problem of a bi-material junction of given boundary conditions is described. Then based on the knowledge of eigenvectors, the eigenfunctions can be formed and Generalized Stress Intensity Factors (GSIFs) obtained by the Overdeterministic Method (ODM). The ODM returns GSIFs as a least square solution of a system of linear equations, which consists of analytical relations and a large amount of Finite Element Method (FEM) displacement results. In the majority of fracture mechanics analyses of cracks and notches, only the singular terms are considered to assess the stability of these general singular stress concentrators. This article presents results for four bi-material combinations of a sharp inclusion and a matrix in the form of stress plots. Stress plots show an analytical solution with the use of (i) singular terms, and (ii) singular and non-singular terms. Analytical solutions are then compared to pure FEM results. Further, the absolute and relative errors between both cases of analytical description and an FEM solution are calculated and plotted. The effect of an elastic moduli mismatch and the distance from the inclusion tip is investigated and quantified by mean absolute error of tangential stress.

  • Název v anglickém jazyce

    The influence of non-singular terms on the precision of stress description near a sharp material inclusion tip

  • Popis výsledku anglicky

    A theoretical elastic stress field in the vicinity of a sharp material inclusion tip has a singular character. The power of a stress singularity, characterized by the exponents of the singularity, is different from the power of a singularity in the case of a crack in homogenous media. Stress distribution near the singular point can be described by an asymptotic expansion. The series consists of singular and non-singular terms, depending on the eigenvalue 2 in the exponent of each term. The singular terms are characterized by 0 < R(lambda) < 1, while the relation 1 < R(lambda) applies to non-singular terms. A sharp material inclusion is modelled as a special case of a multi-material junction, a bi-material junction. A method to calculate eigenvalues for a problem of a bi-material junction of given boundary conditions is described. Then based on the knowledge of eigenvectors, the eigenfunctions can be formed and Generalized Stress Intensity Factors (GSIFs) obtained by the Overdeterministic Method (ODM). The ODM returns GSIFs as a least square solution of a system of linear equations, which consists of analytical relations and a large amount of Finite Element Method (FEM) displacement results. In the majority of fracture mechanics analyses of cracks and notches, only the singular terms are considered to assess the stability of these general singular stress concentrators. This article presents results for four bi-material combinations of a sharp inclusion and a matrix in the form of stress plots. Stress plots show an analytical solution with the use of (i) singular terms, and (ii) singular and non-singular terms. Analytical solutions are then compared to pure FEM results. Further, the absolute and relative errors between both cases of analytical description and an FEM solution are calculated and plotted. The effect of an elastic moduli mismatch and the distance from the inclusion tip is investigated and quantified by mean absolute error of tangential stress.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20306 - Audio engineering, reliability analysis

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Theoretical and Applied Fracture Mechanics

  • ISSN

    0167-8442

  • e-ISSN

  • Svazek periodika

    90

  • Číslo periodika v rámci svazku

    AUG

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    6

  • Strana od-do

    85-99

  • Kód UT WoS článku

    000407410400009

  • EID výsledku v databázi Scopus

    2-s2.0-85015312774