New creep constitutive equation for finite element modelling including transient effects
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F18%3A00488943" target="_blank" >RIV/68081723:_____/18:00488943 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61388998:_____/18:00488943
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.mechmat.2018.01.008" target="_blank" >http://dx.doi.org/10.1016/j.mechmat.2018.01.008</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.mechmat.2018.01.008" target="_blank" >10.1016/j.mechmat.2018.01.008</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
New creep constitutive equation for finite element modelling including transient effects
Popis výsledku v původním jazyce
Creep experiments are time consuming and expensive, moreover, it is not possible to carry out experiments under the actual service conditions of particular materials due to the very low creep strain rate. However, the process seems to be an ideal field for computer modelling. The experimental data are obviously only available for steady-state conditions, and so the effects of varying conditions during startup or shutdown of the components can be described by modelling. Modelling creep deformation is usually based on the so-called creep constitutive equations, which describe the strain rate dependence on stress, temperature and time, or creep strain. Unfortunately, the equations are derived from conventional creep experiments under constant load conditions, and so the transient effects upon stress changes are ignored. Because the stress is transformed between model elements, a correct description of the creep behaviour must contain the transient effects. In this work, the conventional approach to describing primary and secondary creep stages is combined with an internal stress model of the transient creep stage to address the problem of the stress changes, as well as that of the low-stress creep regime.
Název v anglickém jazyce
New creep constitutive equation for finite element modelling including transient effects
Popis výsledku anglicky
Creep experiments are time consuming and expensive, moreover, it is not possible to carry out experiments under the actual service conditions of particular materials due to the very low creep strain rate. However, the process seems to be an ideal field for computer modelling. The experimental data are obviously only available for steady-state conditions, and so the effects of varying conditions during startup or shutdown of the components can be described by modelling. Modelling creep deformation is usually based on the so-called creep constitutive equations, which describe the strain rate dependence on stress, temperature and time, or creep strain. Unfortunately, the equations are derived from conventional creep experiments under constant load conditions, and so the transient effects upon stress changes are ignored. Because the stress is transformed between model elements, a correct description of the creep behaviour must contain the transient effects. In this work, the conventional approach to describing primary and secondary creep stages is combined with an internal stress model of the transient creep stage to address the problem of the stress changes, as well as that of the low-stress creep regime.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mechanics of Materials
ISSN
0167-6636
e-ISSN
—
Svazek periodika
119
Číslo periodika v rámci svazku
APR
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
7
Strana od-do
49-55
Kód UT WoS článku
000428493500006
EID výsledku v databázi Scopus
2-s2.0-85041530758