Multi-phase ELAStic Aggregates (MELASA) software tool for modeling anisotropic elastic properties of lamellar composites
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F20%3A00517187" target="_blank" >RIV/68081723:_____/20:00517187 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14610/20:00113974
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0010465519302504?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0010465519302504?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cpc.2019.106863" target="_blank" >10.1016/j.cpc.2019.106863</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-phase ELAStic Aggregates (MELASA) software tool for modeling anisotropic elastic properties of lamellar composites
Popis výsledku v původním jazyce
We introduce a new web-based tool called MELASA (Multi-phase ELAStic Aggregates), open-access available at https://melasa.cerit-sc.cz, for computations and visualizations of anisotropic elastic properties of lamellar (nano-)composites. MELASA implements a linear-elasticity method by Grimsditch and Nizzoli (1986), originally developed for superlattices of any symmetry. Our tool may be used for computation of anisotropic elastic properties of a specific type of periodically separated lamellar (nano-)composites using matrices of elastic stiffnesses of co-existing phases as an input. Elastic properties are visualized in the form of directional dependencies of selected elastic characteristics (Young's modulus and linear compressibility). MELASA further generalizes the Grimsditch–Nizzoli approach, which was originally formulated for only two phases, to multiple-phase composites. Additionally, our implementation allows for treating internal rotations of local coordination systems corresponding to the natural set of coordinates that match directional vectors of unit cell defining crystal lattice within the co-existing phases. Fe–Al-based superalloy nanocomposites are employed as a numerical example of superlattices with the input and output elastic stiffnesses determined by quantum-mechanical calculations. In particular, three different atomic configurations of interfaces in superlattices containing the ordered Fe3Al phase and a disordered Fe–Al phase with 18.75at.%Al (modeled by a special quasi-random structure, SQS) are considered. They differ by relative positions of sublattices in Fe3Al (an antiphase-like shift) and/or atomic planes in Fe-18.75at.%Al with respect to the interface (a circular/cyclic shift). Program summary: Program title: MELASA Program files doi: http://dx.doi.org/10.17632/rzc2yd2rvc.1 Licensing provisions: MIT license Programming language: JavaScript Nature of problem: Computations and visualizations of anisotropic elastic properties of lamellar (nano-)composites/superlattices Solution method: Implementation of a linear-elasticity method by M. Grimsditch and F. Nizzoli [1], originally derived for superlattices of any symmetry. MELASA computes anisotropic elastic properties of a specific type of periodically separated lamellar (nano-)composites using matrices of elastic stiffnesses of co-existing phases as input. Elastic properties are visualized in the form of directional dependencies of selected elastic characteristics (Young's modulus and linear compressibility). Additional comments including restrictions and unusual features: MELASA generalizes the Grimsditch–Nizzoli approach, which was originally formulated for only two phases, to multiple-phase composites. Additionally, our implementation allows for treating internal rotations of local coordination systems corresponding to the natural set of coordinates that match directional vectors of unit cell defining crystal lattice within the co-existing phases.
Název v anglickém jazyce
Multi-phase ELAStic Aggregates (MELASA) software tool for modeling anisotropic elastic properties of lamellar composites
Popis výsledku anglicky
We introduce a new web-based tool called MELASA (Multi-phase ELAStic Aggregates), open-access available at https://melasa.cerit-sc.cz, for computations and visualizations of anisotropic elastic properties of lamellar (nano-)composites. MELASA implements a linear-elasticity method by Grimsditch and Nizzoli (1986), originally developed for superlattices of any symmetry. Our tool may be used for computation of anisotropic elastic properties of a specific type of periodically separated lamellar (nano-)composites using matrices of elastic stiffnesses of co-existing phases as an input. Elastic properties are visualized in the form of directional dependencies of selected elastic characteristics (Young's modulus and linear compressibility). MELASA further generalizes the Grimsditch–Nizzoli approach, which was originally formulated for only two phases, to multiple-phase composites. Additionally, our implementation allows for treating internal rotations of local coordination systems corresponding to the natural set of coordinates that match directional vectors of unit cell defining crystal lattice within the co-existing phases. Fe–Al-based superalloy nanocomposites are employed as a numerical example of superlattices with the input and output elastic stiffnesses determined by quantum-mechanical calculations. In particular, three different atomic configurations of interfaces in superlattices containing the ordered Fe3Al phase and a disordered Fe–Al phase with 18.75at.%Al (modeled by a special quasi-random structure, SQS) are considered. They differ by relative positions of sublattices in Fe3Al (an antiphase-like shift) and/or atomic planes in Fe-18.75at.%Al with respect to the interface (a circular/cyclic shift). Program summary: Program title: MELASA Program files doi: http://dx.doi.org/10.17632/rzc2yd2rvc.1 Licensing provisions: MIT license Programming language: JavaScript Nature of problem: Computations and visualizations of anisotropic elastic properties of lamellar (nano-)composites/superlattices Solution method: Implementation of a linear-elasticity method by M. Grimsditch and F. Nizzoli [1], originally derived for superlattices of any symmetry. MELASA computes anisotropic elastic properties of a specific type of periodically separated lamellar (nano-)composites using matrices of elastic stiffnesses of co-existing phases as input. Elastic properties are visualized in the form of directional dependencies of selected elastic characteristics (Young's modulus and linear compressibility). Additional comments including restrictions and unusual features: MELASA generalizes the Grimsditch–Nizzoli approach, which was originally formulated for only two phases, to multiple-phase composites. Additionally, our implementation allows for treating internal rotations of local coordination systems corresponding to the natural set of coordinates that match directional vectors of unit cell defining crystal lattice within the co-existing phases.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer Physics Communications
ISSN
0010-4655
e-ISSN
—
Svazek periodika
247
Číslo periodika v rámci svazku
FEB
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
106863
Kód UT WoS článku
000503093400014
EID výsledku v databázi Scopus
2-s2.0-85071125354