Anomalous fatigue crack propagation behavior in near-threshold region of L-PBF prepared austenitic stainless steel
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F23%3A00571956" target="_blank" >RIV/68081723:_____/23:00571956 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26210/23:PU150530
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0921509323004069?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0921509323004069?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.msea.2023.144982" target="_blank" >10.1016/j.msea.2023.144982</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Anomalous fatigue crack propagation behavior in near-threshold region of L-PBF prepared austenitic stainless steel
Popis výsledku v původním jazyce
Laser powder bed fusion (L-PBF) process produces a specific non-equilibrium microstructure with properties significantly different from those of conventionally processed materials. In the present study, the near-threshold fatigue crack propagation in austenitic stainless steel 304L processed by L-PBF was investigated. Three series of specimens with different orientation of initial notch with respect to build direction were manufactured in order to evaluate the effect of specimen orientation on the near-threshold fatigue crack propagation behavior. The results showed absence of the orientation dependence of the fatigue crack propagation behavior. In addition, abnormally low threshold stress intensity factor values were recorded, which were attributed to the absence of crack closure even at low load ratio (R = 0.1). In order to explain observed behavior, the specimens of selected orientation were heat treated to relieve build-in residual stresses (HT1) and to create recrystallized microstructure (HT2) comparable to conventionally processed (wrought) stainless steels. It was found that the characteristic microstructure produced by L-PBF is the main reason for the absence of crack closure and the low threshold values at low load ratios. As-built microstructure containing sub-micron dislocation cell-substructure is prone to cyclic instability. In the crack tip region, cyclic plasticity results in strain-induced phase transformation and continuous thin martensitic layer is formed in the crack vicinity. The induced martensite phase is softer compared to the austenite matrix strengthened by cell-substructure. Together with cyclic instability of the matrix, the macroscopic cyclic softening occurs as the result within the crack tip region. Under such conditions, the formation of the plasticity-induced and roughness-induced crack closure is significantly reduced and macroscopic resistance to the fatigue crack propagation is low.
Název v anglickém jazyce
Anomalous fatigue crack propagation behavior in near-threshold region of L-PBF prepared austenitic stainless steel
Popis výsledku anglicky
Laser powder bed fusion (L-PBF) process produces a specific non-equilibrium microstructure with properties significantly different from those of conventionally processed materials. In the present study, the near-threshold fatigue crack propagation in austenitic stainless steel 304L processed by L-PBF was investigated. Three series of specimens with different orientation of initial notch with respect to build direction were manufactured in order to evaluate the effect of specimen orientation on the near-threshold fatigue crack propagation behavior. The results showed absence of the orientation dependence of the fatigue crack propagation behavior. In addition, abnormally low threshold stress intensity factor values were recorded, which were attributed to the absence of crack closure even at low load ratio (R = 0.1). In order to explain observed behavior, the specimens of selected orientation were heat treated to relieve build-in residual stresses (HT1) and to create recrystallized microstructure (HT2) comparable to conventionally processed (wrought) stainless steels. It was found that the characteristic microstructure produced by L-PBF is the main reason for the absence of crack closure and the low threshold values at low load ratios. As-built microstructure containing sub-micron dislocation cell-substructure is prone to cyclic instability. In the crack tip region, cyclic plasticity results in strain-induced phase transformation and continuous thin martensitic layer is formed in the crack vicinity. The induced martensite phase is softer compared to the austenite matrix strengthened by cell-substructure. Together with cyclic instability of the matrix, the macroscopic cyclic softening occurs as the result within the crack tip region. Under such conditions, the formation of the plasticity-induced and roughness-induced crack closure is significantly reduced and macroscopic resistance to the fatigue crack propagation is low.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials Science and Engineering A Structural Materials Properties Microstructure and Processing
ISSN
0921-5093
e-ISSN
1873-4936
Svazek periodika
872
Číslo periodika v rámci svazku
MAY
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
9
Strana od-do
144982
Kód UT WoS článku
001029632200001
EID výsledku v databázi Scopus
2-s2.0-85152137677