Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Microstructural characterization and mechanical behaviour of laser powder Bed Fusion stainless steel 316L

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F24%3A00583696" target="_blank" >RIV/68081723:_____/24:00583696 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0167844224000922?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167844224000922?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.tafmec.2024.104343" target="_blank" >10.1016/j.tafmec.2024.104343</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Microstructural characterization and mechanical behaviour of laser powder Bed Fusion stainless steel 316L

  • Popis výsledku v původním jazyce

    Laser Powder Bed Fusion (L-PBF) is a highly precise and customizable additive manufacturing (AM) technique nthat uses a high-energy laser to selectively melt and fuse powdered material into a three-dimensional object. nHowever, depending on the process parameters, the final components may have potential flaws that can affect ntheir quality and mechanical properties, due to porosity, melting and incomplete fusion of powder particles and nbecause the process involves local heating and sometimes uneven heat transfer, the processed components may nwarp or crack due to residual stresses or thermal gradients. The manufacturing process itself reflects in the final ncomponent structure having a detrimental effect on the strength, durability, fatigue resistance, and corrosion. nIn this work, static tensile and fatigue tests were performed on traditional and L-PBF manufactured AISI 316L nstainless steel specimens. The energetic release has been evaluated with an infrared camera during the static and nfatigue tests aiming to identify material thermal response to the loading and to predict the failure in rapid way nadopting Thermographic Methods. Differences were observed comparing the fatigue data of the L-PBF processed nspecimens with the traditional material. However, analysis of internal structure, porosity, and surface characteristics of the AM material in combination with fractographic analysis helped to explain the differences in the fatigue life. The observed energy release, different for both material types, was discussed based on the structural characteristics. The results show that the crack originates from a defect on the surface or just below the surface, with a transgranular propagation.

  • Název v anglickém jazyce

    Microstructural characterization and mechanical behaviour of laser powder Bed Fusion stainless steel 316L

  • Popis výsledku anglicky

    Laser Powder Bed Fusion (L-PBF) is a highly precise and customizable additive manufacturing (AM) technique nthat uses a high-energy laser to selectively melt and fuse powdered material into a three-dimensional object. nHowever, depending on the process parameters, the final components may have potential flaws that can affect ntheir quality and mechanical properties, due to porosity, melting and incomplete fusion of powder particles and nbecause the process involves local heating and sometimes uneven heat transfer, the processed components may nwarp or crack due to residual stresses or thermal gradients. The manufacturing process itself reflects in the final ncomponent structure having a detrimental effect on the strength, durability, fatigue resistance, and corrosion. nIn this work, static tensile and fatigue tests were performed on traditional and L-PBF manufactured AISI 316L nstainless steel specimens. The energetic release has been evaluated with an infrared camera during the static and nfatigue tests aiming to identify material thermal response to the loading and to predict the failure in rapid way nadopting Thermographic Methods. Differences were observed comparing the fatigue data of the L-PBF processed nspecimens with the traditional material. However, analysis of internal structure, porosity, and surface characteristics of the AM material in combination with fractographic analysis helped to explain the differences in the fatigue life. The observed energy release, different for both material types, was discussed based on the structural characteristics. The results show that the crack originates from a defect on the surface or just below the surface, with a transgranular propagation.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20301 - Mechanical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Theoretical and Applied Fracture Mechanics

  • ISSN

    0167-8442

  • e-ISSN

    1872-7638

  • Svazek periodika

    131

  • Číslo periodika v rámci svazku

    Jun

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    16

  • Strana od-do

    104343

  • Kód UT WoS článku

    001221917800001

  • EID výsledku v databázi Scopus

    2-s2.0-85186632614