Microstructural characterization and mechanical behaviour of laser powder Bed Fusion stainless steel 316L
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F24%3A00583696" target="_blank" >RIV/68081723:_____/24:00583696 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0167844224000922?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167844224000922?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tafmec.2024.104343" target="_blank" >10.1016/j.tafmec.2024.104343</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Microstructural characterization and mechanical behaviour of laser powder Bed Fusion stainless steel 316L
Popis výsledku v původním jazyce
Laser Powder Bed Fusion (L-PBF) is a highly precise and customizable additive manufacturing (AM) technique nthat uses a high-energy laser to selectively melt and fuse powdered material into a three-dimensional object. nHowever, depending on the process parameters, the final components may have potential flaws that can affect ntheir quality and mechanical properties, due to porosity, melting and incomplete fusion of powder particles and nbecause the process involves local heating and sometimes uneven heat transfer, the processed components may nwarp or crack due to residual stresses or thermal gradients. The manufacturing process itself reflects in the final ncomponent structure having a detrimental effect on the strength, durability, fatigue resistance, and corrosion. nIn this work, static tensile and fatigue tests were performed on traditional and L-PBF manufactured AISI 316L nstainless steel specimens. The energetic release has been evaluated with an infrared camera during the static and nfatigue tests aiming to identify material thermal response to the loading and to predict the failure in rapid way nadopting Thermographic Methods. Differences were observed comparing the fatigue data of the L-PBF processed nspecimens with the traditional material. However, analysis of internal structure, porosity, and surface characteristics of the AM material in combination with fractographic analysis helped to explain the differences in the fatigue life. The observed energy release, different for both material types, was discussed based on the structural characteristics. The results show that the crack originates from a defect on the surface or just below the surface, with a transgranular propagation.
Název v anglickém jazyce
Microstructural characterization and mechanical behaviour of laser powder Bed Fusion stainless steel 316L
Popis výsledku anglicky
Laser Powder Bed Fusion (L-PBF) is a highly precise and customizable additive manufacturing (AM) technique nthat uses a high-energy laser to selectively melt and fuse powdered material into a three-dimensional object. nHowever, depending on the process parameters, the final components may have potential flaws that can affect ntheir quality and mechanical properties, due to porosity, melting and incomplete fusion of powder particles and nbecause the process involves local heating and sometimes uneven heat transfer, the processed components may nwarp or crack due to residual stresses or thermal gradients. The manufacturing process itself reflects in the final ncomponent structure having a detrimental effect on the strength, durability, fatigue resistance, and corrosion. nIn this work, static tensile and fatigue tests were performed on traditional and L-PBF manufactured AISI 316L nstainless steel specimens. The energetic release has been evaluated with an infrared camera during the static and nfatigue tests aiming to identify material thermal response to the loading and to predict the failure in rapid way nadopting Thermographic Methods. Differences were observed comparing the fatigue data of the L-PBF processed nspecimens with the traditional material. However, analysis of internal structure, porosity, and surface characteristics of the AM material in combination with fractographic analysis helped to explain the differences in the fatigue life. The observed energy release, different for both material types, was discussed based on the structural characteristics. The results show that the crack originates from a defect on the surface or just below the surface, with a transgranular propagation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theoretical and Applied Fracture Mechanics
ISSN
0167-8442
e-ISSN
1872-7638
Svazek periodika
131
Číslo periodika v rámci svazku
Jun
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
104343
Kód UT WoS článku
001221917800001
EID výsledku v databázi Scopus
2-s2.0-85186632614