Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Effect of traps and conductive pathways on electron emission from copper broad-area composite emitters

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F24%3A00602566" target="_blank" >RIV/68081723:_____/24:00602566 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68081731:_____/24:00602566 RIV/00216305:26220/24:PU155403

  • Výsledek na webu

    <a href="https://iopscience.iop.org/article/10.1088/1402-4896/ad80df" target="_blank" >https://iopscience.iop.org/article/10.1088/1402-4896/ad80df</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1402-4896/ad80df" target="_blank" >10.1088/1402-4896/ad80df</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Effect of traps and conductive pathways on electron emission from copper broad-area composite emitters

  • Popis výsledku v původním jazyce

    This study investigates electron emission from copper broad-area emitters (CBAEs) and copper broad-area composite emitters (CBACEs) based on the principles of trapping and conductive pathways. Emission current measurements were conducted on two CBACEs, which consisted of copper coated with a 300-400 mu m epoxy resin and subjected to high voltages up to 15 kV. The research specifically examines the switch-on and collapse phenomena occurring within the epoxy layer. Field emission microscopy (FEM) was utilized in a high-vacuum environment ( 10-6 mbar) to observe these effects. A comprehensive model is developed to explain the formation of conductive pathways within the epoxy layer, allowing electrons transfer from traps to the surface. This model treats the composite emitter as a trap-rich capacitor. The study also clarifies the effects of trap density and epoxy layer thickness on the collapse process. To gain a deeper understanding of the model, changes in the I-V curve were examined. Simulations, scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDX) images, and Fourier transform infrared spectroscopy (FTIR) analysis were employed to understand the collapse mechanism of the epoxy collapse. Additionally, Nyquist and Cole-Cole plots were analyzed across frequencies ranging from 1 to 106 Hz before and after applying a high electric field on the samples, revealing changes in the capacitive component and the role of diodes in the formation of conductive channels.

  • Název v anglickém jazyce

    Effect of traps and conductive pathways on electron emission from copper broad-area composite emitters

  • Popis výsledku anglicky

    This study investigates electron emission from copper broad-area emitters (CBAEs) and copper broad-area composite emitters (CBACEs) based on the principles of trapping and conductive pathways. Emission current measurements were conducted on two CBACEs, which consisted of copper coated with a 300-400 mu m epoxy resin and subjected to high voltages up to 15 kV. The research specifically examines the switch-on and collapse phenomena occurring within the epoxy layer. Field emission microscopy (FEM) was utilized in a high-vacuum environment ( 10-6 mbar) to observe these effects. A comprehensive model is developed to explain the formation of conductive pathways within the epoxy layer, allowing electrons transfer from traps to the surface. This model treats the composite emitter as a trap-rich capacitor. The study also clarifies the effects of trap density and epoxy layer thickness on the collapse process. To gain a deeper understanding of the model, changes in the I-V curve were examined. Simulations, scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDX) images, and Fourier transform infrared spectroscopy (FTIR) analysis were employed to understand the collapse mechanism of the epoxy collapse. Additionally, Nyquist and Cole-Cole plots were analyzed across frequencies ranging from 1 to 106 Hz before and after applying a high electric field on the samples, revealing changes in the capacitive component and the role of diodes in the formation of conductive channels.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LM2023051" target="_blank" >LM2023051: Výzkumná infrastruktura CzechNanoLab</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Physica Scripta

  • ISSN

    0031-8949

  • e-ISSN

    1402-4896

  • Svazek periodika

    99

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    16

  • Strana od-do

    116101

  • Kód UT WoS článku

    001333854300001

  • EID výsledku v databázi Scopus

    2-s2.0-85207066121