Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Projective Geometry and the Law of Mass Action

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F09%3A00335097" target="_blank" >RIV/68081731:_____/09:00335097 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Projective Geometry and the Law of Mass Action

  • Popis výsledku v původním jazyce

    A new law of nature asserts that chemical equilibria and chemical kinetics are governed by fundamental principles of projective geometry. The equilibrium constans of chemical reactions are the invariants of projective geometry in disguise. Chemical reactions may geometrically be represented by incidence structures, which are preserved under projective transformations. Theorems of Ceva, Menelaus, and Carnot for triangles and n-gons represent the chemical equilibria, while Routh's theorem represents non-equilibria. Intrinsically projective Riccati's differential equation, being also generic to many other equations of mathematical physics, governs parametric dependence of the equilibrium constants. The theory offers tangible geometrizations and generalizations to the Law of Mass Action, including a new projective-geometric approach to soft computing of very complex problems.

  • Název v anglickém jazyce

    Projective Geometry and the Law of Mass Action

  • Popis výsledku anglicky

    A new law of nature asserts that chemical equilibria and chemical kinetics are governed by fundamental principles of projective geometry. The equilibrium constans of chemical reactions are the invariants of projective geometry in disguise. Chemical reactions may geometrically be represented by incidence structures, which are preserved under projective transformations. Theorems of Ceva, Menelaus, and Carnot for triangles and n-gons represent the chemical equilibria, while Routh's theorem represents non-equilibria. Intrinsically projective Riccati's differential equation, being also generic to many other equations of mathematical physics, governs parametric dependence of the equilibrium constants. The theory offers tangible geometrizations and generalizations to the Law of Mass Action, including a new projective-geometric approach to soft computing of very complex problems.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2009

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Mendel 2009 - 15th International Conference on Soft Computing

  • ISBN

    978-80-214-3884-2

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

  • Název nakladatele

    Brno University of Technology

  • Místo vydání

    Brno

  • Místo konání akce

    Brno

  • Datum konání akce

    24. 6. 2009

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000273029500039