On geometry of multiscale mass action law and its fluctuations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F23%3A00367595" target="_blank" >RIV/68407700:21340/23:00367595 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/23:10473219
Výsledek na webu
<a href="https://doi.org/10.1016/j.physd.2022.133642" target="_blank" >https://doi.org/10.1016/j.physd.2022.133642</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.physd.2022.133642" target="_blank" >10.1016/j.physd.2022.133642</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On geometry of multiscale mass action law and its fluctuations
Popis výsledku v původním jazyce
The classical mass action law in chemical kinetics is put into the context of geometric multiscale thermodynamics, which allows for description of chemical reactions with inertial effects. The kinetics is extended to an enlarged state space with reaction rates as new state variables, and it has the structure a Lie-algebroid dual. Subsequently, the dynamics is lifted to the Liouville description within kinetic theory of the enlarged state space, so that we can include also dynamics of fluctuations. The lifted kinematics has the geometric structure of a matched pair, which allows for reduction to moments by a Lie-algebra homomorphism, as in the Grad hierarchy. In particular, the first and second moments then lead to evolution equations for chemical kinetics with inertia and for correlations between composition and reaction rates. Finally, dissipation is added in the extended state space which leads to the classical mass action law when the moments relax to their respective quasi-equilibria. We demonstrate, for instance, the possibility of oscillating homogeneous chemical reactions, and how correlations between composition and reaction rates contribute to the chemical kinetics. (c) 2022 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
On geometry of multiscale mass action law and its fluctuations
Popis výsledku anglicky
The classical mass action law in chemical kinetics is put into the context of geometric multiscale thermodynamics, which allows for description of chemical reactions with inertial effects. The kinetics is extended to an enlarged state space with reaction rates as new state variables, and it has the structure a Lie-algebroid dual. Subsequently, the dynamics is lifted to the Liouville description within kinetic theory of the enlarged state space, so that we can include also dynamics of fluctuations. The lifted kinematics has the geometric structure of a matched pair, which allows for reduction to moments by a Lie-algebra homomorphism, as in the Grad hierarchy. In particular, the first and second moments then lead to evolution equations for chemical kinetics with inertia and for correlations between composition and reaction rates. Finally, dissipation is added in the extended state space which leads to the classical mass action law when the moments relax to their respective quasi-equilibria. We demonstrate, for instance, the possibility of oscillating homogeneous chemical reactions, and how correlations between composition and reaction rates contribute to the chemical kinetics. (c) 2022 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-22092S" target="_blank" >GA20-22092S: Víceškálová termodynamika: okrajové podmínky, integrace a aplikace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physica D
ISSN
0167-2789
e-ISSN
1872-8022
Svazek periodika
445
Číslo periodika v rámci svazku
133642
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
22
Strana od-do
—
Kód UT WoS článku
000989696800001
EID výsledku v databázi Scopus
2-s2.0-85145974592