'Lissajous-like' trajectories in optical tweezers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F15%3A00467069" target="_blank" >RIV/68081731:_____/15:00467069 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1364/OE.23.031716" target="_blank" >http://dx.doi.org/10.1364/OE.23.031716</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1364/OE.23.031716" target="_blank" >10.1364/OE.23.031716</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
'Lissajous-like' trajectories in optical tweezers
Popis výsledku v původním jazyce
When a microscopic particle moves through a low Reynolds number fluid, it creates a flow-field which exerts hydrodynamic forces on surrounding particles. In this work we study the 'Lissajous-like' trajectories of an optically trapped 'probe' microsphere as it is subjected to time-arying oscillatory hydrodynamic flow-fields created by a nearby moving particle (the 'actuator'). We show a breaking of time-reversal symmetry in the motion of the probe when the driving motion of the actuator is itself time-reversal symmetric. This symmetry breaking results in a fluid-pumping effect, which arises due to the action of both a time-dependent hydrodynamic flow and a position-dependent optical restoring force, which together determine the trajectory of the probe particle. We study this situation experimentally, and show that the form of the trajectories observed is in good agreement with Stokesian dynamics simulations. Our results are related to the techniques of active micro-rheology and flow measurement, and also highlight how the mere presence of an optical trap can perturb the environment it is in place to measure.
Název v anglickém jazyce
'Lissajous-like' trajectories in optical tweezers
Popis výsledku anglicky
When a microscopic particle moves through a low Reynolds number fluid, it creates a flow-field which exerts hydrodynamic forces on surrounding particles. In this work we study the 'Lissajous-like' trajectories of an optically trapped 'probe' microsphere as it is subjected to time-arying oscillatory hydrodynamic flow-fields created by a nearby moving particle (the 'actuator'). We show a breaking of time-reversal symmetry in the motion of the probe when the driving motion of the actuator is itself time-reversal symmetric. This symmetry breaking results in a fluid-pumping effect, which arises due to the action of both a time-dependent hydrodynamic flow and a position-dependent optical restoring force, which together determine the trajectory of the probe particle. We study this situation experimentally, and show that the form of the trajectories observed is in good agreement with Stokesian dynamics simulations. Our results are related to the techniques of active micro-rheology and flow measurement, and also highlight how the mere presence of an optical trap can perturb the environment it is in place to measure.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BH - Optika, masery a lasery
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Optics Express
ISSN
1094-4087
e-ISSN
—
Svazek periodika
23
Číslo periodika v rámci svazku
25
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
31716-31727
Kód UT WoS článku
000366687200010
EID výsledku v databázi Scopus
2-s2.0-84959378213