Optically controlled hydrodynamic micro-manipulation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F15%3A00507105" target="_blank" >RIV/68081731:_____/15:00507105 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1117/12.2191341" target="_blank" >http://dx.doi.org/10.1117/12.2191341</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1117/12.2191341" target="_blank" >10.1117/12.2191341</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optically controlled hydrodynamic micro-manipulation
Popis výsledku v původním jazyce
The ability to precisely manipulate micro-and nano-scale objects has been a major driver in the progression of nanotechnologies. In this proceedings we describe a form of micro-manipulation in which the position of a target object can be controlled via locally generated fluid flow, created by the motion of nearby optically trapped objects. The ability to do this relies on a simple principle: when an object is moved through a fluid, it displaces the surrounding fluid in a predictable manner, resulting in controllable hydrodynamic forces exerted on adjacent objects. Therefore, by moving optically trapped actuators using feedback in response to a target object's current position, the flow-field at the target can be dynamically controlled. Here we investigate the performance of such a system using stochastic Brownian dynamics simulations, which are based on numerical integration of the Langevin equation describing the evolution of the system, using the Rotne-Praga approximation to capture hydrodynamic interactions. We show that optically controlled hydrodynamic micro-manipulation has the potential to hold target objects in place, move them along prescribed trajectories, and damp their Brownian motion, using the indirect forces of the surrounding water alone.
Název v anglickém jazyce
Optically controlled hydrodynamic micro-manipulation
Popis výsledku anglicky
The ability to precisely manipulate micro-and nano-scale objects has been a major driver in the progression of nanotechnologies. In this proceedings we describe a form of micro-manipulation in which the position of a target object can be controlled via locally generated fluid flow, created by the motion of nearby optically trapped objects. The ability to do this relies on a simple principle: when an object is moved through a fluid, it displaces the surrounding fluid in a predictable manner, resulting in controllable hydrodynamic forces exerted on adjacent objects. Therefore, by moving optically trapped actuators using feedback in response to a target object's current position, the flow-field at the target can be dynamically controlled. Here we investigate the performance of such a system using stochastic Brownian dynamics simulations, which are based on numerical integration of the Langevin equation describing the evolution of the system, using the Rotne-Praga approximation to capture hydrodynamic interactions. We show that optically controlled hydrodynamic micro-manipulation has the potential to hold target objects in place, move them along prescribed trajectories, and damp their Brownian motion, using the indirect forces of the surrounding water alone.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Optical Trapping and Optical Micromanipulation XII (Proceedings of SPIE 9548)
ISBN
9781628417142
ISSN
0277-786X
e-ISSN
—
Počet stran výsledku
8
Strana od-do
95481A
Název nakladatele
SPIE
Místo vydání
Bellingham
Místo konání akce
San Diego
Datum konání akce
9. 8. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000366497300035