Evaporating brine from frost flowers with electron microscopy and implications for atmospheric chemistry and sea-salt aerosol formation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F17%3A00479453" target="_blank" >RIV/68081731:_____/17:00479453 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/17:00095496
Výsledek na webu
<a href="http://dx.doi.org/10.5194/acp-17-6291-2017" target="_blank" >http://dx.doi.org/10.5194/acp-17-6291-2017</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5194/acp-17-6291-2017" target="_blank" >10.5194/acp-17-6291-2017</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaporating brine from frost flowers with electron microscopy and implications for atmospheric chemistry and sea-salt aerosol formation
Popis výsledku v původním jazyce
An environmental scanning electron microscope (ESEM) was used for the first time to obtain well-resolved images, in both temporal and spatial dimensions, of lab-prepared frost flowers (FFs) under evaporation within the chamber temperature range from5 to18 degrees C and pressures above 500 Pa. Our scanning shows temperature-dependent NaCl speciation: the brine covering the ice was observed at all conditions, whereas the NaCl crystals were formed at temperatures below10 degrees C as the brine oversaturation was achieved. Finger-like ice structures covered by the brine, with a diameter of several micrometres and length of tens to 100 mu m, are exposed to the ambient air. The brine-covered fingers are highly flexible and cohesive. The exposure of the liquid brine on the micrometric fingers indicates a significant increase in the brine surface area compared to that of the flat ice surface at high temperatures, the NaCl crystals formed can become sites of heterogeneous reactivity at lower temperatures. There is no evidence that, without external forces, salty FFs could automatically fall apart to create a number of sub-particles at the scale of micrometres as the exposed brine fingers seem cohesive and hard to break in the middle. The fingers tend to combine together to form large spheres and then join back to the mother body, eventually forming a large chunk of salt after complete dehydration. The present microscopic observation rationalizes several previously unexplained observations, namely, that FFs are not a direct source of sea-salt aerosols and that saline ice crystals under evapora-tion could accelerate the heterogeneous reactions of bromine liberation.
Název v anglickém jazyce
Evaporating brine from frost flowers with electron microscopy and implications for atmospheric chemistry and sea-salt aerosol formation
Popis výsledku anglicky
An environmental scanning electron microscope (ESEM) was used for the first time to obtain well-resolved images, in both temporal and spatial dimensions, of lab-prepared frost flowers (FFs) under evaporation within the chamber temperature range from5 to18 degrees C and pressures above 500 Pa. Our scanning shows temperature-dependent NaCl speciation: the brine covering the ice was observed at all conditions, whereas the NaCl crystals were formed at temperatures below10 degrees C as the brine oversaturation was achieved. Finger-like ice structures covered by the brine, with a diameter of several micrometres and length of tens to 100 mu m, are exposed to the ambient air. The brine-covered fingers are highly flexible and cohesive. The exposure of the liquid brine on the micrometric fingers indicates a significant increase in the brine surface area compared to that of the flat ice surface at high temperatures, the NaCl crystals formed can become sites of heterogeneous reactivity at lower temperatures. There is no evidence that, without external forces, salty FFs could automatically fall apart to create a number of sub-particles at the scale of micrometres as the exposed brine fingers seem cohesive and hard to break in the middle. The fingers tend to combine together to form large spheres and then join back to the mother body, eventually forming a large chunk of salt after complete dehydration. The present microscopic observation rationalizes several previously unexplained observations, namely, that FFs are not a direct source of sea-salt aerosols and that saline ice crystals under evapora-tion could accelerate the heterogeneous reactions of bromine liberation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10509 - Meteorology and atmospheric sciences
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Atmospheric Chemistry and Physics
ISSN
1680-7316
e-ISSN
—
Svazek periodika
17
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
13
Strana od-do
6291-6303
Kód UT WoS článku
000401921300001
EID výsledku v databázi Scopus
2-s2.0-85015362943