Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F18%3A00499922" target="_blank" >RIV/68081731:_____/18:00499922 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1038/s41377-018-0111-0" target="_blank" >http://dx.doi.org/10.1038/s41377-018-0111-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41377-018-0111-0" target="_blank" >10.1038/s41377-018-0111-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber
Popis výsledku v původním jazyce
Achieving intravital optical imaging with diffraction-limited spatial resolution of deep-brain structures represents an important step toward the goal of understanding the mammalian central nervous system(1-4). Advances in wavefront-shaping methods and computational power have recently allowed for a novel approach to high-resolution imaging, utilizing deterministic light propagation through optically complex media and, of particular importance for this work, multimode optical fibers (MMFs)(5-7). We report a compact and highly optimized approach for minimally invasive in vivo brain imaging applications. The volume of tissue lesion was reduced by more than 100-fold, while preserving diffraction-limited imaging performance utilizing wavefront control of light propagation through a single 50-mu m-core MMF. Here, we demonstrated high-resolution fluorescence imaging of subcellular neuronal structures, dendrites and synaptic specializations, in deep-brain regions of living mice, as well as monitored stimulus-driven functional Ca2+ responses. These results represent a major breakthrough in the compromise between high-resolution imaging and tissue damage, heralding new possibilities for deep-brain imaging in vivo.
Název v anglickém jazyce
Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber
Popis výsledku anglicky
Achieving intravital optical imaging with diffraction-limited spatial resolution of deep-brain structures represents an important step toward the goal of understanding the mammalian central nervous system(1-4). Advances in wavefront-shaping methods and computational power have recently allowed for a novel approach to high-resolution imaging, utilizing deterministic light propagation through optically complex media and, of particular importance for this work, multimode optical fibers (MMFs)(5-7). We report a compact and highly optimized approach for minimally invasive in vivo brain imaging applications. The volume of tissue lesion was reduced by more than 100-fold, while preserving diffraction-limited imaging performance utilizing wavefront control of light propagation through a single 50-mu m-core MMF. Here, we demonstrated high-resolution fluorescence imaging of subcellular neuronal structures, dendrites and synaptic specializations, in deep-brain regions of living mice, as well as monitored stimulus-driven functional Ca2+ responses. These results represent a major breakthrough in the compromise between high-resolution imaging and tissue damage, heralding new possibilities for deep-brain imaging in vivo.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000476" target="_blank" >EF15_003/0000476: Holografická endoskopie pro in vivo aplikace</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Light-Science & Applications
ISSN
2047-7538
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
DEC
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
6
Strana od-do
—
Kód UT WoS článku
000453577600002
EID výsledku v databázi Scopus
2-s2.0-85058859483