Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

How to Build the “Optical Inverse” of a Multimode Fibre

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F22%3A00566874" target="_blank" >RIV/68081731:_____/22:00566874 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://spj.science.org/doi/10.34133/2022/9816026" target="_blank" >https://spj.science.org/doi/10.34133/2022/9816026</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.34133/2022/9816026" target="_blank" >10.34133/2022/9816026</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    How to Build the “Optical Inverse” of a Multimode Fibre

  • Popis výsledku v původním jazyce

    When light propagates through multimode optical fibres (MMFs), the spatial information it carries is scrambled. Wavefront shaping reverses this scrambling, typically one spatial mode at a time-enabling deployment of MMFs as ultrathin microendoscopes. Here, we go beyond sequential wavefront shaping by showing how to simultaneously unscramble all spatial modes emerging from an MMF in parallel. We introduce a passive multiple-scattering element - crafted through the process of inverse design - that is complementary to an MMF and undoes its optical effects. This “optical inverter” makes possible single-shot widefield imaging and super-resolution imaging through MMFs. Our design consists of a cascade of diffractive elements, and can be understood from the perspective of both multi-plane light conversion, and as a physically inspired diffractive neural network. This physical architecture outperforms state-of-the-art electronic neural networks tasked with unscrambling light, as it preserves the phase and coherence information of optical signals flowing through it. We show, in numerical simulations, how to efficiently sort and tune the relative phase of up to ~400 step-index fibre modes, reforming incoherent images of scenes at arbitrary distances from the fibre facet. Our optical inverter can dynamically adapt to see through experimentally realistic flexible fibres-made possible by moulding optical memory effects into its design. The scheme is based on current fabrication technology so could be realised in the near future. Beyond imaging, these concepts open up a range of new avenues for optical multiplexing, communications, and computation in the realms of classical and quantum photonics.

  • Název v anglickém jazyce

    How to Build the “Optical Inverse” of a Multimode Fibre

  • Popis výsledku anglicky

    When light propagates through multimode optical fibres (MMFs), the spatial information it carries is scrambled. Wavefront shaping reverses this scrambling, typically one spatial mode at a time-enabling deployment of MMFs as ultrathin microendoscopes. Here, we go beyond sequential wavefront shaping by showing how to simultaneously unscramble all spatial modes emerging from an MMF in parallel. We introduce a passive multiple-scattering element - crafted through the process of inverse design - that is complementary to an MMF and undoes its optical effects. This “optical inverter” makes possible single-shot widefield imaging and super-resolution imaging through MMFs. Our design consists of a cascade of diffractive elements, and can be understood from the perspective of both multi-plane light conversion, and as a physically inspired diffractive neural network. This physical architecture outperforms state-of-the-art electronic neural networks tasked with unscrambling light, as it preserves the phase and coherence information of optical signals flowing through it. We show, in numerical simulations, how to efficiently sort and tune the relative phase of up to ~400 step-index fibre modes, reforming incoherent images of scenes at arbitrary distances from the fibre facet. Our optical inverter can dynamically adapt to see through experimentally realistic flexible fibres-made possible by moulding optical memory effects into its design. The scheme is based on current fabrication technology so could be realised in the near future. Beyond imaging, these concepts open up a range of new avenues for optical multiplexing, communications, and computation in the realms of classical and quantum photonics.

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    10306 - Optics (including laser optics and quantum optics)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000476" target="_blank" >EF15_003/0000476: Holografická endoskopie pro in vivo aplikace</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Intelligent Computing

  • ISSN

    2771-5892

  • e-ISSN

    2771-5892

  • Svazek periodika

    2022

  • Číslo periodika v rámci svazku

    17 November

  • Stát vydavatele periodika

    CN - Čínská lidová republika

  • Počet stran výsledku

    13

  • Strana od-do

    9816026

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus