Hybrid multimode - multicore fibre based holographic endoscope for deep-tissue neurophotonics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F22%3A00564722" target="_blank" >RIV/68081731:_____/22:00564722 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.light-am.com/article/doi/10.37188/lam.2022.029" target="_blank" >https://www.light-am.com/article/doi/10.37188/lam.2022.029</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.37188/lam.2022.029" target="_blank" >10.37188/lam.2022.029</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hybrid multimode - multicore fibre based holographic endoscope for deep-tissue neurophotonics
Popis výsledku v původním jazyce
n-vivo microendoscopy in animal models became a groundbreaking technique in neuroscience that rapidly expands our understanding of the brain. Emerging hair-thin endoscopes based on multimode fibres are now opening up the prospect of ultra-minimally invasive neuroimaging of deeply located brain structures. Complementing these advancements with methods of functional imaging and optogenetics, as well as extending its applicability to awake and motile animals constitute the most pressing challenges for this technology. Here we demonstrate a novel fibre design capable of both, high-resolution imaging in immobilised animals and bending-resilient optical addressing of neurons in motile animals. The optimised refractive index profile and the probe structure allowed reaching a spatial resolution of 2 μm across a 230 μm field of view for the initial layout of the fibre. Simultaneously, the fibre exhibits negligible cross-talk between individual inner-cores during fibre deformation. This work provides a technological solution for imaging-assisted spatially selective photo-activation and activity monitoring in awake and freely moving animal models.
Název v anglickém jazyce
Hybrid multimode - multicore fibre based holographic endoscope for deep-tissue neurophotonics
Popis výsledku anglicky
n-vivo microendoscopy in animal models became a groundbreaking technique in neuroscience that rapidly expands our understanding of the brain. Emerging hair-thin endoscopes based on multimode fibres are now opening up the prospect of ultra-minimally invasive neuroimaging of deeply located brain structures. Complementing these advancements with methods of functional imaging and optogenetics, as well as extending its applicability to awake and motile animals constitute the most pressing challenges for this technology. Here we demonstrate a novel fibre design capable of both, high-resolution imaging in immobilised animals and bending-resilient optical addressing of neurons in motile animals. The optimised refractive index profile and the probe structure allowed reaching a spatial resolution of 2 μm across a 230 μm field of view for the initial layout of the fibre. Simultaneously, the fibre exhibits negligible cross-talk between individual inner-cores during fibre deformation. This work provides a technological solution for imaging-assisted spatially selective photo-activation and activity monitoring in awake and freely moving animal models.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000476" target="_blank" >EF15_003/0000476: Holografická endoskopie pro in vivo aplikace</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Light: Advanced Manufacturing
ISSN
2689-9620
e-ISSN
—
Svazek periodika
3
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CN - Čínská lidová republika
Počet stran výsledku
9
Strana od-do
29
Kód UT WoS článku
001350219300001
EID výsledku v databázi Scopus
2-s2.0-85148611611