Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Advancing the path to in-vivo imaging in freely moving mice via multimode-multicore fiber based holographic endoscopy

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F24%3A00598854" target="_blank" >RIV/68081731:_____/24:00598854 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.spiedigitallibrary.org/journals/neurophotonics/volume-11/issue-S1/S11506/Advancing-the-path-to-in-vivo-imaging-in-freely-moving/10.1117/1.NPh.11.S1.S11506.full" target="_blank" >https://www.spiedigitallibrary.org/journals/neurophotonics/volume-11/issue-S1/S11506/Advancing-the-path-to-in-vivo-imaging-in-freely-moving/10.1117/1.NPh.11.S1.S11506.full</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1117/1.NPh.11.S1.S11506" target="_blank" >10.1117/1.NPh.11.S1.S11506</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Advancing the path to in-vivo imaging in freely moving mice via multimode-multicore fiber based holographic endoscopy

  • Popis výsledku v původním jazyce

    Significance Hair-thin multimode optical fiber-based holographic endoscopes have gained considerable interest in modern neuroscience for their ability to achieve cellular and even subcellular resolution during in-vivo deep brain imaging. However, the application of multimode fibers in freely moving animals presents a persistent challenge as it is difficult to maintain optimal imaging performance while the fiber undergoes deformations. Aim We propose a fiber solution for challenging in-vivo applications with the capability of deep brain high spatial resolution imaging and neuronal activity monitoring in anesthetized as well as awake behaving mice. Approach We used our previously developed (MCF)-C-3 multimode-multicore fiber to record fluorescently labeled neurons in anesthetized mice. Our (MCF)-C-3 exhibits a cascaded refractive index structure, enabling two distinct regimes of light transport that imitate either a multimode or a multicore fiber. The (MCF)-C-3 has been specifically designed for use in the initial phase of an in-vivo experiment, allowing for the navigation of the endoscope's distal end toward the targeted brain structure. The multicore regime enables the transfer of light to and from each individual neuron within the field of view. For chronic experiments in awake behaving mice, it is crucial to allow for disconnecting the fiber and the animal between experiments. Therefore, we provide here an effective solution and establish a protocol for reconnection of two segments of (MCF)-C-3 with hexagonally arranged corelets. Results We successfully utilized the (MCF)-C-3 to image neurons in anaesthetized transgenic mice expressing enhanced green fluorescent protein. Additionally, we compared imaging results obtained with the (MCF)-C-3 with larger numerical aperture (NA) fibers in fixed whole-brain tissue. Conclusions This study focuses on addressing challenges and providing insights into the use of multimode-multicore fibers as imaging solutions for in-vivo applications. We suggest that the upcoming version of the (MCF)-C-3 increases the overall NA between the two cladding layers to allow for access to high resolution spatial imaging. As the NA increases in the multimode regime, the fiber diameter and ring structure must be reduced to minimize the computational burden and invasiveness.

  • Název v anglickém jazyce

    Advancing the path to in-vivo imaging in freely moving mice via multimode-multicore fiber based holographic endoscopy

  • Popis výsledku anglicky

    Significance Hair-thin multimode optical fiber-based holographic endoscopes have gained considerable interest in modern neuroscience for their ability to achieve cellular and even subcellular resolution during in-vivo deep brain imaging. However, the application of multimode fibers in freely moving animals presents a persistent challenge as it is difficult to maintain optimal imaging performance while the fiber undergoes deformations. Aim We propose a fiber solution for challenging in-vivo applications with the capability of deep brain high spatial resolution imaging and neuronal activity monitoring in anesthetized as well as awake behaving mice. Approach We used our previously developed (MCF)-C-3 multimode-multicore fiber to record fluorescently labeled neurons in anesthetized mice. Our (MCF)-C-3 exhibits a cascaded refractive index structure, enabling two distinct regimes of light transport that imitate either a multimode or a multicore fiber. The (MCF)-C-3 has been specifically designed for use in the initial phase of an in-vivo experiment, allowing for the navigation of the endoscope's distal end toward the targeted brain structure. The multicore regime enables the transfer of light to and from each individual neuron within the field of view. For chronic experiments in awake behaving mice, it is crucial to allow for disconnecting the fiber and the animal between experiments. Therefore, we provide here an effective solution and establish a protocol for reconnection of two segments of (MCF)-C-3 with hexagonally arranged corelets. Results We successfully utilized the (MCF)-C-3 to image neurons in anaesthetized transgenic mice expressing enhanced green fluorescent protein. Additionally, we compared imaging results obtained with the (MCF)-C-3 with larger numerical aperture (NA) fibers in fixed whole-brain tissue. Conclusions This study focuses on addressing challenges and providing insights into the use of multimode-multicore fibers as imaging solutions for in-vivo applications. We suggest that the upcoming version of the (MCF)-C-3 increases the overall NA between the two cladding layers to allow for access to high resolution spatial imaging. As the NA increases in the multimode regime, the fiber diameter and ring structure must be reduced to minimize the computational burden and invasiveness.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10306 - Optics (including laser optics and quantum optics)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000476" target="_blank" >EF15_003/0000476: Holografická endoskopie pro in vivo aplikace</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Neurophotonics

  • ISSN

    2329-423X

  • e-ISSN

    2329-4248

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    S1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    S11506

  • Kód UT WoS článku

    001316474200004

  • EID výsledku v databázi Scopus

    2-s2.0-85204905319