Scalable, Multiplatform, and Autonomous ECG Processor Supported by AI for Telemedicine Center
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F22%3A00583011" target="_blank" >RIV/68081731:_____/22:00583011 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10081823" target="_blank" >https://ieeexplore.ieee.org/document/10081823</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.22489/CinC.2022.052" target="_blank" >10.22489/CinC.2022.052</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Scalable, Multiplatform, and Autonomous ECG Processor Supported by AI for Telemedicine Center
Popis výsledku v původním jazyce
Background: Wearable devices play an essential role in the early diagnosis of heart diseases. However, effective management of long-term ECG measurements (1-3 weeks) by a telemedicine center (TMC) requires specifically designed software. Method: We used the multiplatform framework.NET to build the application. Deep-learning models for QRS detection, classification, and rhythm analysis were trained in the PyTorch framework, models were trained using data from Medical Data Transfer, s. r. o. Czechia (N=73,450 and 12,111). The ONNX runtime libraries were used for model inference, including acceleration by graphic cards Results: The pre-production benchmark (recordings of 82 patients) showed a mean accuracy of 0.97 ± 0.04 for QRS detection and classification into three classes, it also showed a mean accuracy of 0.97 ± 0.03 for rhythm classification into seven classes. Conclusion: The presented software is a fully automated, multiplatform, and scalable back-end application to process incoming ECG data in the TMC Although it is not freely accessible, we are open to considering processing ECG data for research and strictly non-commercial purposes.
Název v anglickém jazyce
Scalable, Multiplatform, and Autonomous ECG Processor Supported by AI for Telemedicine Center
Popis výsledku anglicky
Background: Wearable devices play an essential role in the early diagnosis of heart diseases. However, effective management of long-term ECG measurements (1-3 weeks) by a telemedicine center (TMC) requires specifically designed software. Method: We used the multiplatform framework.NET to build the application. Deep-learning models for QRS detection, classification, and rhythm analysis were trained in the PyTorch framework, models were trained using data from Medical Data Transfer, s. r. o. Czechia (N=73,450 and 12,111). The ONNX runtime libraries were used for model inference, including acceleration by graphic cards Results: The pre-production benchmark (recordings of 82 patients) showed a mean accuracy of 0.97 ± 0.04 for QRS detection and classification into three classes, it also showed a mean accuracy of 0.97 ± 0.03 for rhythm classification into seven classes. Conclusion: The presented software is a fully automated, multiplatform, and scalable back-end application to process incoming ECG data in the TMC Although it is not freely accessible, we are open to considering processing ECG data for research and strictly non-commercial purposes.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/FW01010305" target="_blank" >FW01010305: Umělá inteligence pro autonomní klasifikaci EKG v rámci online telemedicínské platformy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2022 Computing in Cardiology (CinC)
ISBN
979-8-3503-0097-0
ISSN
2325-8861
e-ISSN
2325-887X
Počet stran výsledku
4
Strana od-do
052
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Tampere
Datum konání akce
4. 9. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—