Ultra-High Frequency ECG Deep-Learning Beat Detector Delivering QRS Onsets and Offsets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F22%3A00583012" target="_blank" >RIV/68081731:_____/22:00583012 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10081715" target="_blank" >https://ieeexplore.ieee.org/document/10081715</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.22489/CinC.2022.230" target="_blank" >10.22489/CinC.2022.230</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Ultra-High Frequency ECG Deep-Learning Beat Detector Delivering QRS Onsets and Offsets
Popis výsledku v původním jazyce
Background: QRS duration is a common measure linked to conduction abnormalities in heart ventricles. Aim: We propose a QRS detector, further able to locate QRS onset and offset in one inference step. Method: A 3-second window from 12 leads of UHF ECG signal (5 kHz) is standardized and processed with the UNet network. The output is an array of QRS probabilities, further processed with probability and distance criterion, allowing us to determine duration and final location of QRSs. Results: The model was trained on 2,250 ECG recordings from the FNUSA-ICRC hospital (Brno, Czechia). The model was tested on 5 different datasets: FNUSA, a dataset from FNKV hospital (Prague, Czechia), and three public datasets (Cipa, Strict LBBB, LUDB). Regarding QRS duration, results showed a mean absolute error of 13.99 ± 4.29 ms between annotated durations and the output of the proposed model. A QRS detection F-score was 0.98 ± 0.01. Conclusion: Our results indicate high QRS detection performance on both spontaneous and paced UHF ECG data. We also showed that QRS detection and duration could be combined in one deep learning algorithm.
Název v anglickém jazyce
Ultra-High Frequency ECG Deep-Learning Beat Detector Delivering QRS Onsets and Offsets
Popis výsledku anglicky
Background: QRS duration is a common measure linked to conduction abnormalities in heart ventricles. Aim: We propose a QRS detector, further able to locate QRS onset and offset in one inference step. Method: A 3-second window from 12 leads of UHF ECG signal (5 kHz) is standardized and processed with the UNet network. The output is an array of QRS probabilities, further processed with probability and distance criterion, allowing us to determine duration and final location of QRSs. Results: The model was trained on 2,250 ECG recordings from the FNUSA-ICRC hospital (Brno, Czechia). The model was tested on 5 different datasets: FNUSA, a dataset from FNKV hospital (Prague, Czechia), and three public datasets (Cipa, Strict LBBB, LUDB). Regarding QRS duration, results showed a mean absolute error of 13.99 ± 4.29 ms between annotated durations and the output of the proposed model. A QRS detection F-score was 0.98 ± 0.01. Conclusion: Our results indicate high QRS detection performance on both spontaneous and paced UHF ECG data. We also showed that QRS detection and duration could be combined in one deep learning algorithm.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2022 Computing in Cardiology (CinC)
ISBN
979-8-3503-0097-0
ISSN
2325-8861
e-ISSN
2325-887X
Počet stran výsledku
4
Strana od-do
"2022"-"eptember (2022)"
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Tampere
Datum konání akce
4. 9. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—