Automation of Metallographic Sample Etching Process
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F23%3A00572567" target="_blank" >RIV/68081731:_____/23:00572567 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scientific.net/DDF.423.113" target="_blank" >https://www.scientific.net/DDF.423.113</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4028/p-s347g9" target="_blank" >10.4028/p-s347g9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automation of Metallographic Sample Etching Process
Popis výsledku v původním jazyce
Chemical etching is an integral part of metallographic sample preparation. Maintaining precise etch times can be difficult and therefore repeatability is limited. The aim of this work is to improve the repeatability of sample preparation using robotization. Prior to etching, metallographic samples of S355J2 (1.0577) structural steel were finely mechanically polished. For verification, 15 specimens were prepared using an in-house designed automated etching machine with a built-in 5-axis robotic arm and 15 specimens prepared manually by an expert metallographer. The samples were etched with Kourbatoff 4 reagent for 8 seconds in a beaker placed in an ultrasonic cleaner at 80 kHz. The samples were then cleaned in 7 beakers of cleaning fluid also placed in the ultrasonic cleaner. The robotic etching and cleaning process was optimized and the quality of the resulting surface is at least as good as that of the samples prepared by an expert metallographer. The surfaces were compared using a light optical microscope (LOM) and a confocal laser scanning microscope (CLSM). The repeatability of the preparation process is a key aspect for obtaining a large dataset of steel microphotographs for training a deep neural network that will be used in future research.
Název v anglickém jazyce
Automation of Metallographic Sample Etching Process
Popis výsledku anglicky
Chemical etching is an integral part of metallographic sample preparation. Maintaining precise etch times can be difficult and therefore repeatability is limited. The aim of this work is to improve the repeatability of sample preparation using robotization. Prior to etching, metallographic samples of S355J2 (1.0577) structural steel were finely mechanically polished. For verification, 15 specimens were prepared using an in-house designed automated etching machine with a built-in 5-axis robotic arm and 15 specimens prepared manually by an expert metallographer. The samples were etched with Kourbatoff 4 reagent for 8 seconds in a beaker placed in an ultrasonic cleaner at 80 kHz. The samples were then cleaned in 7 beakers of cleaning fluid also placed in the ultrasonic cleaner. The robotic etching and cleaning process was optimized and the quality of the resulting surface is at least as good as that of the samples prepared by an expert metallographer. The surfaces were compared using a light optical microscope (LOM) and a confocal laser scanning microscope (CLSM). The repeatability of the preparation process is a key aspect for obtaining a large dataset of steel microphotographs for training a deep neural network that will be used in future research.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/TN01000008" target="_blank" >TN01000008: Centrum elektronové a fotonové optiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Defect and Diffusion Forum
ISSN
1012-0386
e-ISSN
—
Svazek periodika
423
Číslo periodika v rámci svazku
April
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
6
Strana od-do
113-118
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85159048343