Genetic algorithm designed for optimization of neural network architectures for intracranial EEG recordings analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F23%3A00577393" target="_blank" >RIV/68081731:_____/23:00577393 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00159816:_____/23:00079587 RIV/68407700:21460/23:00366949 RIV/00216224:14110/23:00132262
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1741-2552/acdc54" target="_blank" >https://iopscience.iop.org/article/10.1088/1741-2552/acdc54</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1741-2552/acdc54" target="_blank" >10.1088/1741-2552/acdc54</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Genetic algorithm designed for optimization of neural network architectures for intracranial EEG recordings analysis
Popis výsledku v původním jazyce
Objective. The current practices of designing neural networks rely heavily on subjective judgment and heuristic steps, often dictated by the level of expertise possessed by architecture designers. To alleviate these challenges and streamline the design process, we propose an automatic method, a novel approach to enhance the optimization of neural network architectures for processing intracranial electroencephalogram (iEEG) data. Approach. We present a genetic algorithm, which optimizes neural network architecture and signal pre-processing parameters for iEEG classification. Main results. Our method improved the macro F1 score of the state-of-the-art model in two independent datasets, from St. Anne's University Hospital (Brno, Czech Republic) and Mayo Clinic (Rochester, MN, USA), from 0.9076 to 0.9673 and from 0.9222 to 0.9400 respectively. Significance. By incorporating principles of evolutionary optimization, our approach reduces the reliance on human intuition and empirical guesswork in architecture design, thus promoting more efficient and effective neural network models. The proposed method achieved significantly improved results when compared to the state-of-the-art benchmark model (McNemar's test, p MUCH LESS-THAN 0.01). The results indicate that neural network architectures designed through machine-based optimization outperform those crafted using the subjective heuristic approach of a human expert. Furthermore, we show that well-designed data preprocessing significantly affects the models' performance.
Název v anglickém jazyce
Genetic algorithm designed for optimization of neural network architectures for intracranial EEG recordings analysis
Popis výsledku anglicky
Objective. The current practices of designing neural networks rely heavily on subjective judgment and heuristic steps, often dictated by the level of expertise possessed by architecture designers. To alleviate these challenges and streamline the design process, we propose an automatic method, a novel approach to enhance the optimization of neural network architectures for processing intracranial electroencephalogram (iEEG) data. Approach. We present a genetic algorithm, which optimizes neural network architecture and signal pre-processing parameters for iEEG classification. Main results. Our method improved the macro F1 score of the state-of-the-art model in two independent datasets, from St. Anne's University Hospital (Brno, Czech Republic) and Mayo Clinic (Rochester, MN, USA), from 0.9076 to 0.9673 and from 0.9222 to 0.9400 respectively. Significance. By incorporating principles of evolutionary optimization, our approach reduces the reliance on human intuition and empirical guesswork in architecture design, thus promoting more efficient and effective neural network models. The proposed method achieved significantly improved results when compared to the state-of-the-art benchmark model (McNemar's test, p MUCH LESS-THAN 0.01). The results indicate that neural network architectures designed through machine-based optimization outperform those crafted using the subjective heuristic approach of a human expert. Furthermore, we show that well-designed data preprocessing significantly affects the models' performance.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Neural Engineering
ISSN
1741-2560
e-ISSN
1741-2552
Svazek periodika
20
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
036034
Kód UT WoS článku
001085835700001
EID výsledku v databázi Scopus
2-s2.0-85163311622