Contrast mechanism at landing energy near 0 eV in super low-energy scanning electron microscopy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F24%3A00579320" target="_blank" >RIV/68081731:_____/24:00579320 - isvavai.cz</a>
Výsledek na webu
<a href="https://academic.oup.com/jmicro/advance-article/doi/10.1093/jmicro/dfad042/7250156" target="_blank" >https://academic.oup.com/jmicro/advance-article/doi/10.1093/jmicro/dfad042/7250156</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/jmicro/dfad042" target="_blank" >10.1093/jmicro/dfad042</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Contrast mechanism at landing energy near 0 eV in super low-energy scanning electron microscopy
Popis výsledku v původním jazyce
In recent years, the technique of scanning electron microscopy (SEM) observation with low landing energy of a few keV or less has become common. We have especially focused on the drastic contrast change at near 0 eV. Using a patterned sample consisting of Si, Ni and Pt, threshold energies where the total reflection of incident electrons occurs were investigated by SEM at near 0 eV. In both the cases of in-situ and ex-situ sample cleaning, drastic changes in the brightness of each material were observed at near 0 eV, with threshold energies in the order Si < Ni < Pt. This order agreed with the order of the literature values of the work functions and the surface potentials measured by Kelvin force probe microscopy. This result suggests that the difference of the threshold energy is caused by the difference in surface potential due to the work function difference of each material. Although the order of the threshold energies also agreed with those of work functions reported in the literature, the work functions of air-exposed surfaces should be rather considered as 'modified work functions', since they could be significantly altered by the adsorbates, etc. Nevertheless, the difference of the threshold energy for each material was observed with commercial SEM at landing energy near 0 eV, which opens a new possibility to distinguish materials, although the difference should be rather recognized as 'fingerprints', since surface potentials are sensitive to conditions of surface treatments and atmospheric exposure.
Název v anglickém jazyce
Contrast mechanism at landing energy near 0 eV in super low-energy scanning electron microscopy
Popis výsledku anglicky
In recent years, the technique of scanning electron microscopy (SEM) observation with low landing energy of a few keV or less has become common. We have especially focused on the drastic contrast change at near 0 eV. Using a patterned sample consisting of Si, Ni and Pt, threshold energies where the total reflection of incident electrons occurs were investigated by SEM at near 0 eV. In both the cases of in-situ and ex-situ sample cleaning, drastic changes in the brightness of each material were observed at near 0 eV, with threshold energies in the order Si < Ni < Pt. This order agreed with the order of the literature values of the work functions and the surface potentials measured by Kelvin force probe microscopy. This result suggests that the difference of the threshold energy is caused by the difference in surface potential due to the work function difference of each material. Although the order of the threshold energies also agreed with those of work functions reported in the literature, the work functions of air-exposed surfaces should be rather considered as 'modified work functions', since they could be significantly altered by the adsorbates, etc. Nevertheless, the difference of the threshold energy for each material was observed with commercial SEM at landing energy near 0 eV, which opens a new possibility to distinguish materials, although the difference should be rather recognized as 'fingerprints', since surface potentials are sensitive to conditions of surface treatments and atmospheric exposure.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Microscopy
ISSN
2050-5698
e-ISSN
2050-5701
Svazek periodika
73
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
243-250
Kód UT WoS článku
001060233900001
EID výsledku v databázi Scopus
2-s2.0-85195435906