Deep-Learning Estimation of Second-Generation Pharmacokinetic-Model Parameters in DCE-MRI
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F24%3A00619162" target="_blank" >RIV/68081731:_____/24:00619162 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/abstract/document/10913501" target="_blank" >https://ieeexplore.ieee.org/abstract/document/10913501</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/BHI62660.2024.10913501" target="_blank" >10.1109/BHI62660.2024.10913501</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep-Learning Estimation of Second-Generation Pharmacokinetic-Model Parameters in DCE-MRI
Popis výsledku v původním jazyce
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a promising method for the evaluation of tissue perfusion. Current standard is fitting of a pharmacokinetic model to the acquired signals. Most commonly, first generation models are used (Tofts, extended Tofts model) providing stable results, however, only a limited set of parameters. Second generation models allow estimation of a larger parameter set, thus a more complete description of the perfusion state, however, they require high data quality and their application is more computationally demanding. Overall, the lack of standardization of DCE-MRI, its computational time and reliability hinders its routine clinical application. Deep learning methods allow fast parameter estimation and bring new possibilities into this field. In this study, we have explored the application of a convolutional neural network for the prediction of second-generation model parameters. The network was tested for different noise levels and sampling periods on a simulated dataset, and the results were validated on a real preclinical dataset. The proposed method provided more stable and robust results compared to the conventional model fitting.
Název v anglickém jazyce
Deep-Learning Estimation of Second-Generation Pharmacokinetic-Model Parameters in DCE-MRI
Popis výsledku anglicky
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a promising method for the evaluation of tissue perfusion. Current standard is fitting of a pharmacokinetic model to the acquired signals. Most commonly, first generation models are used (Tofts, extended Tofts model) providing stable results, however, only a limited set of parameters. Second generation models allow estimation of a larger parameter set, thus a more complete description of the perfusion state, however, they require high data quality and their application is more computationally demanding. Overall, the lack of standardization of DCE-MRI, its computational time and reliability hinders its routine clinical application. Deep learning methods allow fast parameter estimation and bring new possibilities into this field. In this study, we have explored the application of a convolutional neural network for the prediction of second-generation model parameters. The network was tested for different noise levels and sampling periods on a simulated dataset, and the results were validated on a real preclinical dataset. The proposed method provided more stable and robust results compared to the conventional model fitting.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI)
ISBN
979-8-3503-5156-9
ISSN
2641-3590
e-ISSN
—
Počet stran výsledku
8
Strana od-do
10913501
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Houston
Datum konání akce
10. 11. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001465723200004