MHC genotyping by sscp and amplicon‐based ngs approach in chamois
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081766%3A_____%2F20%3A00532506" target="_blank" >RIV/68081766:_____/20:00532506 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2076-2615/10/9/1694" target="_blank" >https://www.mdpi.com/2076-2615/10/9/1694</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ani10091694" target="_blank" >10.3390/ani10091694</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
MHC genotyping by sscp and amplicon‐based ngs approach in chamois
Popis výsledku v původním jazyce
Genes of the major histocompatibility complex (MHC) code for cell surface proteins essential for adaptive immunity. They show the most outstanding genetic diversity in vertebrates, which has been connected with various fitness traits and thus with the long-term persistence of populations. In this study, polymorphism of the MHC class II DRB locus was investigated in chamois with Single-Strand Conformation Polymorphism (SSCP)/Sanger genotyping and Ion Torrent S5 next-generation sequencing (NGS). From eight identified DRB variants in 28 individuals, five had already been described, and three were new, undescribed alleles. With conventional SSCP/Sanger sequencing, we were able to detect seven alleles, all of which were also detected with NGS. We found inconsistencies in the individual genotypes between the two methods, which were mainly caused by allelic dropout in the SSCP/Sanger method. Six out of 28 individuals were falsely classified as homozygous with SSCP/Sanger analysis. Overall, 25% of the individuals were identified as genotyping discrepancies between the two methods. Our results show that NGS technologies are better performing in sequencing highly variable regions such as the MHC, and they also have a higher detection capacity, thus allowing a more accurate description of the genetic composition, which is crucial for evolutionary and population genetic studies.
Název v anglickém jazyce
MHC genotyping by sscp and amplicon‐based ngs approach in chamois
Popis výsledku anglicky
Genes of the major histocompatibility complex (MHC) code for cell surface proteins essential for adaptive immunity. They show the most outstanding genetic diversity in vertebrates, which has been connected with various fitness traits and thus with the long-term persistence of populations. In this study, polymorphism of the MHC class II DRB locus was investigated in chamois with Single-Strand Conformation Polymorphism (SSCP)/Sanger genotyping and Ion Torrent S5 next-generation sequencing (NGS). From eight identified DRB variants in 28 individuals, five had already been described, and three were new, undescribed alleles. With conventional SSCP/Sanger sequencing, we were able to detect seven alleles, all of which were also detected with NGS. We found inconsistencies in the individual genotypes between the two methods, which were mainly caused by allelic dropout in the SSCP/Sanger method. Six out of 28 individuals were falsely classified as homozygous with SSCP/Sanger analysis. Overall, 25% of the individuals were identified as genotyping discrepancies between the two methods. Our results show that NGS technologies are better performing in sequencing highly variable regions such as the MHC, and they also have a higher detection capacity, thus allowing a more accurate description of the genetic composition, which is crucial for evolutionary and population genetic studies.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10613 - Zoology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Animals
ISSN
2076-2615
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
9
Strana od-do
1694
Kód UT WoS článku
000581374000001
EID výsledku v databázi Scopus
2-s2.0-85091114854