Stable discretization of poroelasticity problems and efficient preconditioners for arising saddle point type matrices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F12%3A00427664" target="_blank" >RIV/68145535:_____/12:00427664 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/article/10.1007/s00791-013-0209-0" target="_blank" >http://link.springer.com/article/10.1007/s00791-013-0209-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00791-013-0209-0" target="_blank" >10.1007/s00791-013-0209-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Stable discretization of poroelasticity problems and efficient preconditioners for arising saddle point type matrices
Popis výsledku v původním jazyce
Poroelastic models arise in reservoir modeling and many other important applications. Under certain assumptions, they involve a time-dependent coupled system consisting of Navier?Lamé equations for the displacements, Darcy?s flow equation for the fluid velocity and a divergence constraint equation. Stability for infinite time of the continuous problem and, second and third order accurate, time discretized equations are shown. Methods to handle the lack of regularity at initial times are discussed and illustrated numerically. After discretization, at each time step this leads to a block matrix system in saddle point form. Mixed space discretization methods and a regularization method to stabilize the system and avoid locking in the pressure variable arepresented. A certain block matrix preconditioner is shown to cluster the eigenvalues of the preconditioned matrix about the unit value but needs inner iterations for certain matrix.
Název v anglickém jazyce
Stable discretization of poroelasticity problems and efficient preconditioners for arising saddle point type matrices
Popis výsledku anglicky
Poroelastic models arise in reservoir modeling and many other important applications. Under certain assumptions, they involve a time-dependent coupled system consisting of Navier?Lamé equations for the displacements, Darcy?s flow equation for the fluid velocity and a divergence constraint equation. Stability for infinite time of the continuous problem and, second and third order accurate, time discretized equations are shown. Methods to handle the lack of regularity at initial times are discussed and illustrated numerically. After discretization, at each time step this leads to a block matrix system in saddle point form. Mixed space discretization methods and a regularization method to stabilize the system and avoid locking in the pressure variable arepresented. A certain block matrix preconditioner is shown to cluster the eigenvalues of the preconditioned matrix about the unit value but needs inner iterations for certain matrix.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computing and Visualization in Science
ISSN
1432-9360
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
NE - Nigerijská federativní republika
Počet stran výsledku
17
Strana od-do
191-207
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—