Efficient iteration methods for complex systems with an indefinite matrix term
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F22%3A00555974" target="_blank" >RIV/68145535:_____/22:00555974 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10092-022-00461-w" target="_blank" >https://link.springer.com/article/10.1007/s10092-022-00461-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10092-022-00461-w" target="_blank" >10.1007/s10092-022-00461-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient iteration methods for complex systems with an indefinite matrix term
Popis výsledku v původním jazyce
Complex valued systems with an indefinite matrix term arise in important applications such as for certain time-harmonic partial differential equations such as the Maxwell's equation and for the Helmholtz equation. Complex systems with symmetric positive definite matrices can be solved readily by rewriting the complex matrix system in two-by-two block matrix form with real matrices which can be efficiently solved by iteration using the preconditioned square block (PRESB) preconditioning method and preferably accelerated by the Chebyshev method. The appearances of an indefinite matrix term causes however some difficulties. To handle this we propose different forms of matrix splitting methods, with or without any parameters involved. A matrix spectral analyses is presented followed by extensive numerical comparisons of various forms of the methods.
Název v anglickém jazyce
Efficient iteration methods for complex systems with an indefinite matrix term
Popis výsledku anglicky
Complex valued systems with an indefinite matrix term arise in important applications such as for certain time-harmonic partial differential equations such as the Maxwell's equation and for the Helmholtz equation. Complex systems with symmetric positive definite matrices can be solved readily by rewriting the complex matrix system in two-by-two block matrix form with real matrices which can be efficiently solved by iteration using the preconditioned square block (PRESB) preconditioning method and preferably accelerated by the Chebyshev method. The appearances of an indefinite matrix term causes however some difficulties. To handle this we propose different forms of matrix splitting methods, with or without any parameters involved. A matrix spectral analyses is presented followed by extensive numerical comparisons of various forms of the methods.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Calcolo
ISSN
0008-0624
e-ISSN
1126-5434
Svazek periodika
59
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
IT - Italská republika
Počet stran výsledku
18
Strana od-do
15
Kód UT WoS článku
000767202400001
EID výsledku v databázi Scopus
2-s2.0-85126258418