Numerical and computational efficiency of solvers for two-phase problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F13%3A00388267" target="_blank" >RIV/68145535:_____/13:00388267 - isvavai.cz</a>
Výsledek na webu
<a href="http://ac.els-cdn.com/S0898122112004191/1-s2.0-S0898122112004191-main.pdf?_tid=e77dd742-63a2-11e2-9070-00000aab0f02&acdnat=1358756389_e11eaef264d0bac8123c4a00be3f6efa" target="_blank" >http://ac.els-cdn.com/S0898122112004191/1-s2.0-S0898122112004191-main.pdf?_tid=e77dd742-63a2-11e2-9070-00000aab0f02&acdnat=1358756389_e11eaef264d0bac8123c4a00be3f6efa</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.camwa.2012.05.020" target="_blank" >10.1016/j.camwa.2012.05.020</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Numerical and computational efficiency of solvers for two-phase problems
Popis výsledku v původním jazyce
We consider two-phase flow problems, modelled by the Cahn?Hilliard equation. In this work, the nonlinear fourth-order equation is decomposed into a system of two coupled second-order equations for the concentration and the chemical potential. We analysesolution methods based on an approximate two-by-two block factorization of the Jacobian of the nonlinear discrete problem. We propose a preconditioning technique that reduces the problem of solving the non-symmetric discrete Cahn?Hilliard system to a problem of solving systems with symmetric positive definite matrices where off-the-shelf multilevel and multigrid algorithms are directly applicable. The resulting solution methods exhibit optimal convergence and computational complexity properties and aresuitable for parallel implementation. Weillustrate the efficiency of the proposed methods by various numerical experiments, including parallel results for large scale three dimensional problems.
Název v anglickém jazyce
Numerical and computational efficiency of solvers for two-phase problems
Popis výsledku anglicky
We consider two-phase flow problems, modelled by the Cahn?Hilliard equation. In this work, the nonlinear fourth-order equation is decomposed into a system of two coupled second-order equations for the concentration and the chemical potential. We analysesolution methods based on an approximate two-by-two block factorization of the Jacobian of the nonlinear discrete problem. We propose a preconditioning technique that reduces the problem of solving the non-symmetric discrete Cahn?Hilliard system to a problem of solving systems with symmetric positive definite matrices where off-the-shelf multilevel and multigrid algorithms are directly applicable. The resulting solution methods exhibit optimal convergence and computational complexity properties and aresuitable for parallel implementation. Weillustrate the efficiency of the proposed methods by various numerical experiments, including parallel results for large scale three dimensional problems.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers & Mathematics With Applications
ISSN
0898-1221
e-ISSN
—
Svazek periodika
65
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
301-314
Kód UT WoS článku
000315239900002
EID výsledku v databázi Scopus
—