A reliable incremental method of computing the limit load in deformation plasticity based on compliance: Continuous and discrete setting
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F16%3A00465662" target="_blank" >RIV/68145535:_____/16:00465662 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/16:10330717
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0377042716300917" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0377042716300917</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2016.02.035" target="_blank" >10.1016/j.cam.2016.02.035</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A reliable incremental method of computing the limit load in deformation plasticity based on compliance: Continuous and discrete setting
Popis výsledku v původním jazyce
The aim of this paper is to introduce an enhanced incremental procedure that can be used for the numerical evaluation and reliable estimation of the limit load. A conventional incremental method of limit analysis is based on parametrization of the respective variational formulation by the loading parameter ζ∈(0,ζlim)ζ∈(0,ζlim), where ζlimζlim is generally unknown. The enhanced incremental procedure is operated in terms of an inverse mapping ψ:α↦ζψ:α↦ζ where the parameter αα belongs to (0,+)(0,+) and its physical meaning is work of applied forces at the equilibrium state. The function ψψ is continuous, nondecreasing and its values tend to ζlimζlim as α+α+. Reduction of the problem to a finite element subspace associated with a mesh ThTh generates the discrete limit parameter ζlim,hζlim,h and the discrete counterpart ψhψh to the function ψψ. We prove pointwise convergence ψhψψhψ and specify a class of yield functions for which ζlim,hζlimζlim,hζlim. These convergence results enable to find reliable lower and upper bounds of ζlimζlim. Numerical tests confirm computational efficiency of the suggested method.
Název v anglickém jazyce
A reliable incremental method of computing the limit load in deformation plasticity based on compliance: Continuous and discrete setting
Popis výsledku anglicky
The aim of this paper is to introduce an enhanced incremental procedure that can be used for the numerical evaluation and reliable estimation of the limit load. A conventional incremental method of limit analysis is based on parametrization of the respective variational formulation by the loading parameter ζ∈(0,ζlim)ζ∈(0,ζlim), where ζlimζlim is generally unknown. The enhanced incremental procedure is operated in terms of an inverse mapping ψ:α↦ζψ:α↦ζ where the parameter αα belongs to (0,+)(0,+) and its physical meaning is work of applied forces at the equilibrium state. The function ψψ is continuous, nondecreasing and its values tend to ζlimζlim as α+α+. Reduction of the problem to a finite element subspace associated with a mesh ThTh generates the discrete limit parameter ζlim,hζlim,h and the discrete counterpart ψhψh to the function ψψ. We prove pointwise convergence ψhψψhψ and specify a class of yield functions for which ζlim,hζlimζlim,hζlim. These convergence results enable to find reliable lower and upper bounds of ζlimζlim. Numerical tests confirm computational efficiency of the suggested method.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Computational and Applied Mathematics
ISSN
0377-0427
e-ISSN
—
Svazek periodika
303
Číslo periodika v rámci svazku
September 2016
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
156-170
Kód UT WoS článku
000375177500013
EID výsledku v databázi Scopus
2-s2.0-84961783214