Subdifferential-based implicit return-mapping operators in computational plasticity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F16%3A00465667" target="_blank" >RIV/68145535:_____/16:00465667 - isvavai.cz</a>
Výsledek na webu
<a href="http://onlinelibrary.wiley.com/doi/10.1002/zamm.201500305/full" target="_blank" >http://onlinelibrary.wiley.com/doi/10.1002/zamm.201500305/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/zamm.201500305" target="_blank" >10.1002/zamm.201500305</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Subdifferential-based implicit return-mapping operators in computational plasticity
Popis výsledku v původním jazyce
In this paper we explore a numerical solution to elastoplastic constitutive initial value problems. An improved form of the implicit return-mapping scheme for nonsmooth yield surfaces is proposed that systematically builds upon a subdifferential formulation of the flow rule. The main advantage of this approach is that the treatment of singular points – apices or edges at which the flow direction is multivalued – only involves a uniquely defined set of non-linear equations, similarly to smooth yield surfaces. This paper focuses on isotropic models containing: a) yield surfaces with one or two apices (singular points) on the hydrostatic axis, b) plastic pseudo-potentials that are independent of the Lode angle, and c) possibly nonlinear isotropic hardening. We show that for some models the improved integration scheme also enables us to a priori decide about a type of the return and to investigate the existence, uniqueness, and semismoothness of discretized constitutive operators. The semismooth Newton method is also introduced for solving the incremental boundary-value problems. The paper contains numerical examples related to slope stability with publicly available Matlab implementations.
Název v anglickém jazyce
Subdifferential-based implicit return-mapping operators in computational plasticity
Popis výsledku anglicky
In this paper we explore a numerical solution to elastoplastic constitutive initial value problems. An improved form of the implicit return-mapping scheme for nonsmooth yield surfaces is proposed that systematically builds upon a subdifferential formulation of the flow rule. The main advantage of this approach is that the treatment of singular points – apices or edges at which the flow direction is multivalued – only involves a uniquely defined set of non-linear equations, similarly to smooth yield surfaces. This paper focuses on isotropic models containing: a) yield surfaces with one or two apices (singular points) on the hydrostatic axis, b) plastic pseudo-potentials that are independent of the Lode angle, and c) possibly nonlinear isotropic hardening. We show that for some models the improved integration scheme also enables us to a priori decide about a type of the return and to investigate the existence, uniqueness, and semismoothness of discretized constitutive operators. The semismooth Newton method is also introduced for solving the incremental boundary-value problems. The paper contains numerical examples related to slope stability with publicly available Matlab implementations.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Zeitschrift fuer Angewandte Mathematik und Mechanik
ISSN
1521-4001
e-ISSN
—
Svazek periodika
96
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
21
Strana od-do
1318-1338
Kód UT WoS článku
000387359600005
EID výsledku v databázi Scopus
2-s2.0-84977510858