Subdifferential-based implicit return-mapping operators in computational plasticity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F16%3A00304147" target="_blank" >RIV/68407700:21110/16:00304147 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/16:86098728
Výsledek na webu
<a href="http://arxiv.org/abs/1503.03605" target="_blank" >http://arxiv.org/abs/1503.03605</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/zamm.201500305" target="_blank" >10.1002/zamm.201500305</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Subdifferential-based implicit return-mapping operators in computational plasticity
Popis výsledku v původním jazyce
In this paper we explore a numerical solution to elastoplastic constitutive initial value problems. An improved form of the implicit return-mapping scheme for nonsmooth yield surfaces is proposed that systematically builds upon a subdifferential formulation of the flow rule. The main advantage of this approach is that the treatment of singular points - apices or edges at which the flow direction is multivalued - only involves a uniquely defined set of non-linear equations, similarly to smooth yield surfaces. This paper focuses on isotropic models containing: a) yield surfaces with one or two apices (singular points) on the hydrostatic axis, b) plastic pseudo-potentials that are independent of the Lode angle, and c) possibly nonlinear isotropic hardening. We show that for some models the improved integration scheme also enables us to a priori decide about a type of the return and to investigate the existence, uniqueness, and semismoothness of discretized constitutive operators. The semismooth Newton method is also introduced for solving the incremental boundary-value problems. The paper contains numerical examples related to slope stability with publicly available Matlab implementations. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Název v anglickém jazyce
Subdifferential-based implicit return-mapping operators in computational plasticity
Popis výsledku anglicky
In this paper we explore a numerical solution to elastoplastic constitutive initial value problems. An improved form of the implicit return-mapping scheme for nonsmooth yield surfaces is proposed that systematically builds upon a subdifferential formulation of the flow rule. The main advantage of this approach is that the treatment of singular points - apices or edges at which the flow direction is multivalued - only involves a uniquely defined set of non-linear equations, similarly to smooth yield surfaces. This paper focuses on isotropic models containing: a) yield surfaces with one or two apices (singular points) on the hydrostatic axis, b) plastic pseudo-potentials that are independent of the Lode angle, and c) possibly nonlinear isotropic hardening. We show that for some models the improved integration scheme also enables us to a priori decide about a type of the return and to investigate the existence, uniqueness, and semismoothness of discretized constitutive operators. The semismooth Newton method is also introduced for solving the incremental boundary-value problems. The paper contains numerical examples related to slope stability with publicly available Matlab implementations. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Zeitschrift für angewandte Mathematik und Mechanik
ISSN
0044-2267
e-ISSN
—
Svazek periodika
96
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
21
Strana od-do
1318-1338
Kód UT WoS článku
000387359600005
EID výsledku v databázi Scopus
2-s2.0-84977510858