Solution of Inverse Problems using Bayesian Approach with Application to Estimation of Material Parameters in Darcy Flow
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F17%3A00482833" target="_blank" >RIV/68145535:_____/17:00482833 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/17:10237745 RIV/61989100:27740/17:10237745
Výsledek na webu
<a href="http://advances.utc.sk/index.php/AEEE/article/view/2236" target="_blank" >http://advances.utc.sk/index.php/AEEE/article/view/2236</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.15598/aeee.v15i2.2236" target="_blank" >10.15598/aeee.v15i2.2236</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Solution of Inverse Problems using Bayesian Approach with Application to Estimation of Material Parameters in Darcy Flow
Popis výsledku v původním jazyce
Standard numerical methods for solving inverse problems in partial differential equations do not reflect a possible inaccuracy in observed data. However, in real engineering applications we cannot avoid uncertainties caused by measurement errors. In the Bayesian approach every unknown or inaccurate value is treated as a random variable. This paper presents an application of the Bayesian inverse approach to the reconstruction of a porosity field as a parameter of the Darcy flow problem. However, this framework can be applied to a wide range of problems that involve some amount of uncertainty. Here the material field is modeled as a Gaussian random field, which is expressed as a function of several random variables. The information about these random variables is given by the resulting posterior distribution, which is then studied using the Cross-Entropy method and samples are generated using the Metropolis-Hastings algorithm.
Název v anglickém jazyce
Solution of Inverse Problems using Bayesian Approach with Application to Estimation of Material Parameters in Darcy Flow
Popis výsledku anglicky
Standard numerical methods for solving inverse problems in partial differential equations do not reflect a possible inaccuracy in observed data. However, in real engineering applications we cannot avoid uncertainties caused by measurement errors. In the Bayesian approach every unknown or inaccurate value is treated as a random variable. This paper presents an application of the Bayesian inverse approach to the reconstruction of a porosity field as a parameter of the Darcy flow problem. However, this framework can be applied to a wide range of problems that involve some amount of uncertainty. Here the material field is modeled as a Gaussian random field, which is expressed as a function of several random variables. The information about these random variables is given by the resulting posterior distribution, which is then studied using the Cross-Entropy method and samples are generated using the Metropolis-Hastings algorithm.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Electrical and Electronic Engineering
ISSN
1336-1376
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
9
Strana od-do
258-266
Kód UT WoS článku
000409044400017
EID výsledku v databázi Scopus
2-s2.0-85025665571