Finite Difference Methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F17%3A00521432" target="_blank" >RIV/68145535:_____/17:00521432 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1002/9781119176817.ecm2002" target="_blank" >http://dx.doi.org/10.1002/9781119176817.ecm2002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/9781119176817.ecm2002" target="_blank" >10.1002/9781119176817.ecm2002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Finite Difference Methods
Popis výsledku v původním jazyce
It is shown how difference methods lead to monotone operators with uniformly bounded inverses for which discretization error estimates for the solution and its derivatives can readily be derived. Higher order of accuracy can be achieved for sufficiently regular solutions by extrapolation or by the use of various higher order difference methods.nProperties of solutions of elliptic, parabolic, hyperbolic, and convection‐dominated convection–diffusion problems as well as positivity and continuous and discrete maximum principles of the solution are shown. Computational aspects of solving difference equations are discussed. Stable discretization of time‐dependent problems is shown for parabolic problems and hyperbolic problems of first and second order. Various discretization methods for convection‐dominated convection–diffusion problems, including method of characteristics, are presented.nDifference methods have their main advantages in that regular meshes can be used. To handle more general problems, adaptive mesh refinement and use of graded meshes are discussed. Use of local Green's functions and other examples of exact difference schemes are also presented.n
Název v anglickém jazyce
Finite Difference Methods
Popis výsledku anglicky
It is shown how difference methods lead to monotone operators with uniformly bounded inverses for which discretization error estimates for the solution and its derivatives can readily be derived. Higher order of accuracy can be achieved for sufficiently regular solutions by extrapolation or by the use of various higher order difference methods.nProperties of solutions of elliptic, parabolic, hyperbolic, and convection‐dominated convection–diffusion problems as well as positivity and continuous and discrete maximum principles of the solution are shown. Computational aspects of solving difference equations are discussed. Stable discretization of time‐dependent problems is shown for parabolic problems and hyperbolic problems of first and second order. Various discretization methods for convection‐dominated convection–diffusion problems, including method of characteristics, are presented.nDifference methods have their main advantages in that regular meshes can be used. To handle more general problems, adaptive mesh refinement and use of graded meshes are discussed. Use of local Green's functions and other examples of exact difference schemes are also presented.n
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Encyclopedia of Computational Mechanics Second Edition, 6 Volume Set
ISBN
978-1-119-00379-3
Počet stran výsledku
52
Strana od-do
1-52
Počet stran knihy
4024
Název nakladatele
John Wiley & Sons, Ltd.
Místo vydání
Chichester
Kód UT WoS kapitoly
—