Preconditioning methods for eddy current optimally controlled time-harmonic electromagnetic problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F19%3A00495498" target="_blank" >RIV/68145535:_____/19:00495498 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/19:10243570
Výsledek na webu
<a href="https://www.degruyter.com/view/j/jnma.2019.27.issue-1/jnma-2017-0064/jnma-2017-0064.xml?format=INT" target="_blank" >https://www.degruyter.com/view/j/jnma.2019.27.issue-1/jnma-2017-0064/jnma-2017-0064.xml?format=INT</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/jnma-2017-0064" target="_blank" >10.1515/jnma-2017-0064</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Preconditioning methods for eddy current optimally controlled time-harmonic electromagnetic problems
Popis výsledku v původním jazyce
Time-harmonic problems arise in many important applications, such as eddy current optimally controlled electromagnetic problems. Eddy cur-nrent modelling can also be used in non-destructive testings of conducting materials. Using a truncated Fourier series to approximate the solution, for linear problems the equation for different frequencies separate, so it suffices to study solution methods for the problem for a single frequency. The arising discretized system takes a two-by-two or four-by-four block matrix form. Since the problems are in general three-dimensional in space and hence of very large scale, one must use an iterative solution method. It is then crucial to construct efficient preconditioners. It is shown that an earlier used preconditioner for optimal control problems is applicable here also and leads to very tight eigenvalue bounds and hence very fast convergence such as for a Krylov subspace iterative solution method. A comparison is done with an earlier used block diagonal preconditioner.
Název v anglickém jazyce
Preconditioning methods for eddy current optimally controlled time-harmonic electromagnetic problems
Popis výsledku anglicky
Time-harmonic problems arise in many important applications, such as eddy current optimally controlled electromagnetic problems. Eddy cur-nrent modelling can also be used in non-destructive testings of conducting materials. Using a truncated Fourier series to approximate the solution, for linear problems the equation for different frequencies separate, so it suffices to study solution methods for the problem for a single frequency. The arising discretized system takes a two-by-two or four-by-four block matrix form. Since the problems are in general three-dimensional in space and hence of very large scale, one must use an iterative solution method. It is then crucial to construct efficient preconditioners. It is shown that an earlier used preconditioner for optimal control problems is applicable here also and leads to very tight eigenvalue bounds and hence very fast convergence such as for a Krylov subspace iterative solution method. A comparison is done with an earlier used block diagonal preconditioner.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Numerical Mathematics
ISSN
1570-2820
e-ISSN
—
Svazek periodika
27
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
27
Strana od-do
1-21
Kód UT WoS článku
000460431500001
EID výsledku v databázi Scopus
2-s2.0-85041384996