Bayesian inversion for steady flow in fractured porous media with contact on fractures and hydro mechanical coupling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F20%3A00533163" target="_blank" >RIV/68145535:_____/20:00533163 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/20:10244847
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10596-020-09935-8" target="_blank" >https://link.springer.com/article/10.1007/s10596-020-09935-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10596-020-09935-8" target="_blank" >10.1007/s10596-020-09935-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bayesian inversion for steady flow in fractured porous media with contact on fractures and hydro mechanical coupling
Popis výsledku v původním jazyce
The paper is motivated by a strong interest in numerical analysis of flow in fractured porous media, e.g., rocks in geo-engineering applications. It follows the conception of porous media as a continuum with fractures which are represented as lower dimensional objects. In the paper, the finite element discretization of the flow in coupled continuum and fractures is used. Fluid pressures serve as the basic unknowns. In many applications, the flow is connected with deformations of the porous matrix, therefore, the hydro-mechanical coupling is also considered. The fluid pressure is transferred to the mechanical load in both pores and fractures and the considered mechanical model involves elastic deformations of the porous matrix and opening/closing of the fractures with the non-penetration constraint. The mechanical model with this constraint is implemented via the technique of the Lagrange multipliers, duality formulation, and combination with a suitable domain decomposition method. There is usually lack of information about problem parameters and they undergo many uncertainties coming e.g. from the heterogeneity of rock formations and complicated realization of experiments for parameter identification. These experiments rarely provide some of the asked parameters directly but require solving inverse problems. The stochastic (Bayesian) inversion is natural due to the mentioned uncertainties. In this paper, the implementation of the Bayesian inversion is realized via Metropolis-Hastings Markov chain Monte Carlo approach. For the reduction of computational demands, the sampling procedure uses the delayed acceptance of samples based on a surrogate model which is constructed during a preliminary sampling process. The developed hydro-mechanical model and the implemented Bayesian inversion are tested on two types of model inverse problems.
Název v anglickém jazyce
Bayesian inversion for steady flow in fractured porous media with contact on fractures and hydro mechanical coupling
Popis výsledku anglicky
The paper is motivated by a strong interest in numerical analysis of flow in fractured porous media, e.g., rocks in geo-engineering applications. It follows the conception of porous media as a continuum with fractures which are represented as lower dimensional objects. In the paper, the finite element discretization of the flow in coupled continuum and fractures is used. Fluid pressures serve as the basic unknowns. In many applications, the flow is connected with deformations of the porous matrix, therefore, the hydro-mechanical coupling is also considered. The fluid pressure is transferred to the mechanical load in both pores and fractures and the considered mechanical model involves elastic deformations of the porous matrix and opening/closing of the fractures with the non-penetration constraint. The mechanical model with this constraint is implemented via the technique of the Lagrange multipliers, duality formulation, and combination with a suitable domain decomposition method. There is usually lack of information about problem parameters and they undergo many uncertainties coming e.g. from the heterogeneity of rock formations and complicated realization of experiments for parameter identification. These experiments rarely provide some of the asked parameters directly but require solving inverse problems. The stochastic (Bayesian) inversion is natural due to the mentioned uncertainties. In this paper, the implementation of the Bayesian inversion is realized via Metropolis-Hastings Markov chain Monte Carlo approach. For the reduction of computational demands, the sampling procedure uses the delayed acceptance of samples based on a surrogate model which is constructed during a preliminary sampling process. The developed hydro-mechanical model and the implemented Bayesian inversion are tested on two types of model inverse problems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Geosciences
ISSN
1420-0597
e-ISSN
—
Svazek periodika
24
Číslo periodika v rámci svazku
February 2020
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
22
Strana od-do
1911-1932
Kód UT WoS článku
000517019300001
EID výsledku v databázi Scopus
2-s2.0-85081326146