Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Bayesian inversion for steady flow in fractured porous media with contact on fractures and hydro mechanical coupling

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F20%3A00533163" target="_blank" >RIV/68145535:_____/20:00533163 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27240/20:10244847

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s10596-020-09935-8" target="_blank" >https://link.springer.com/article/10.1007/s10596-020-09935-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10596-020-09935-8" target="_blank" >10.1007/s10596-020-09935-8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Bayesian inversion for steady flow in fractured porous media with contact on fractures and hydro mechanical coupling

  • Popis výsledku v původním jazyce

    The paper is motivated by a strong interest in numerical analysis of flow in fractured porous media, e.g., rocks in geo-engineering applications. It follows the conception of porous media as a continuum with fractures which are represented as lower dimensional objects. In the paper, the finite element discretization of the flow in coupled continuum and fractures is used. Fluid pressures serve as the basic unknowns. In many applications, the flow is connected with deformations of the porous matrix, therefore, the hydro-mechanical coupling is also considered. The fluid pressure is transferred to the mechanical load in both pores and fractures and the considered mechanical model involves elastic deformations of the porous matrix and opening/closing of the fractures with the non-penetration constraint. The mechanical model with this constraint is implemented via the technique of the Lagrange multipliers, duality formulation, and combination with a suitable domain decomposition method. There is usually lack of information about problem parameters and they undergo many uncertainties coming e.g. from the heterogeneity of rock formations and complicated realization of experiments for parameter identification. These experiments rarely provide some of the asked parameters directly but require solving inverse problems. The stochastic (Bayesian) inversion is natural due to the mentioned uncertainties. In this paper, the implementation of the Bayesian inversion is realized via Metropolis-Hastings Markov chain Monte Carlo approach. For the reduction of computational demands, the sampling procedure uses the delayed acceptance of samples based on a surrogate model which is constructed during a preliminary sampling process. The developed hydro-mechanical model and the implemented Bayesian inversion are tested on two types of model inverse problems.

  • Název v anglickém jazyce

    Bayesian inversion for steady flow in fractured porous media with contact on fractures and hydro mechanical coupling

  • Popis výsledku anglicky

    The paper is motivated by a strong interest in numerical analysis of flow in fractured porous media, e.g., rocks in geo-engineering applications. It follows the conception of porous media as a continuum with fractures which are represented as lower dimensional objects. In the paper, the finite element discretization of the flow in coupled continuum and fractures is used. Fluid pressures serve as the basic unknowns. In many applications, the flow is connected with deformations of the porous matrix, therefore, the hydro-mechanical coupling is also considered. The fluid pressure is transferred to the mechanical load in both pores and fractures and the considered mechanical model involves elastic deformations of the porous matrix and opening/closing of the fractures with the non-penetration constraint. The mechanical model with this constraint is implemented via the technique of the Lagrange multipliers, duality formulation, and combination with a suitable domain decomposition method. There is usually lack of information about problem parameters and they undergo many uncertainties coming e.g. from the heterogeneity of rock formations and complicated realization of experiments for parameter identification. These experiments rarely provide some of the asked parameters directly but require solving inverse problems. The stochastic (Bayesian) inversion is natural due to the mentioned uncertainties. In this paper, the implementation of the Bayesian inversion is realized via Metropolis-Hastings Markov chain Monte Carlo approach. For the reduction of computational demands, the sampling procedure uses the delayed acceptance of samples based on a surrogate model which is constructed during a preliminary sampling process. The developed hydro-mechanical model and the implemented Bayesian inversion are tested on two types of model inverse problems.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computational Geosciences

  • ISSN

    1420-0597

  • e-ISSN

  • Svazek periodika

    24

  • Číslo periodika v rámci svazku

    February 2020

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    22

  • Strana od-do

    1911-1932

  • Kód UT WoS článku

    000517019300001

  • EID výsledku v databázi Scopus

    2-s2.0-85081326146