Efficient Implementation of the Bayesian Inversion by MCMC with Acceleration of Posterior Sampling Using Surrogate Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F21%3A00543700" target="_blank" >RIV/68145535:_____/21:00543700 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/21:10248831
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-64514-4_91" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-64514-4_91</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-64514-4_91" target="_blank" >10.1007/978-3-030-64514-4_91</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient Implementation of the Bayesian Inversion by MCMC with Acceleration of Posterior Sampling Using Surrogate Models
Popis výsledku v původním jazyce
The contribution is motivated by the Bayesian approach to the solution of material identification problems which frequently appear in geo-engineering. We shall consider the cases with associated forward model describing flow in porous media with or without fractures as well as coupled hydro-mechanical processes. When assuming uncertainties in observed data, the use of the Bayesian inversion is natural. In comparison to deterministic methods, which lead only to a point estimate of the identified parameters, the Bayesian approach provides their probability distribution. The implementation of the Bayesian inversion is realized via Markov Chain Monte Carlo methods. The paper aims at the acceleration of the posterior sampling using a surrogate model that provides a polynomial approximation of the full forward model. The sampling procedure is based on the delayed acceptance Metropolis-Hastings (DAMH) algorithm. Therefore, for each proposed sample, the acceptance decision contains a preliminary step, which works only with an approximated posterior distribution constructed using the surrogate model. Furthermore, the approximated posterior distribution is being updated using new snapshots obtained during the sampling process. The posterior distribution updates are realized via updates of the surrogate model. The application of the described approach is shown through several model examples including flow in porous media with fractures and hydro-mechanical coupling.
Název v anglickém jazyce
Efficient Implementation of the Bayesian Inversion by MCMC with Acceleration of Posterior Sampling Using Surrogate Models
Popis výsledku anglicky
The contribution is motivated by the Bayesian approach to the solution of material identification problems which frequently appear in geo-engineering. We shall consider the cases with associated forward model describing flow in porous media with or without fractures as well as coupled hydro-mechanical processes. When assuming uncertainties in observed data, the use of the Bayesian inversion is natural. In comparison to deterministic methods, which lead only to a point estimate of the identified parameters, the Bayesian approach provides their probability distribution. The implementation of the Bayesian inversion is realized via Markov Chain Monte Carlo methods. The paper aims at the acceleration of the posterior sampling using a surrogate model that provides a polynomial approximation of the full forward model. The sampling procedure is based on the delayed acceptance Metropolis-Hastings (DAMH) algorithm. Therefore, for each proposed sample, the acceptance decision contains a preliminary step, which works only with an approximated posterior distribution constructed using the surrogate model. Furthermore, the approximated posterior distribution is being updated using new snapshots obtained during the sampling process. The posterior distribution updates are realized via updates of the surrogate model. The application of the described approach is shown through several model examples including flow in porous media with fractures and hydro-mechanical coupling.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/TK02010118" target="_blank" >TK02010118: Predikce vlastností EDZ s vlivem na bezpečnost a spolehlivost hlubinného úložiště radioaktivního odpadu.</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Civil Engineering
ISBN
978-3-030-64513-7
ISSN
2366-2557
e-ISSN
—
Počet stran výsledku
8
Strana od-do
(2021)
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Turin
Datum konání akce
5. 5. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—