The use of radial basis function surrogate models for sampling process acceleration in Bayesian inversio
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F20%3A00537236" target="_blank" >RIV/68145535:_____/20:00537236 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-14907-9_23" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-14907-9_23</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-14907-9_23" target="_blank" >10.1007/978-3-030-14907-9_23</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The use of radial basis function surrogate models for sampling process acceleration in Bayesian inversio
Popis výsledku v původním jazyce
The Bayesian approach provides a natural way of solving engineering inverse problems including uncertainties. The objective is to describe unknown parameters of a mathematical model based on noisy measurements. Using the Bayesian approach, the vector of unknown parameters is described by its joint probability distribution, i.e. the posterior distribution. To provide samples, Markov Chain Monte Carlo methods can be used. Their disadvantage lies in the need of repeated evaluations of the mathematical model that are computationally expensive in the case of practical problems.nnThis paper focuses on the reduction of the number of these evaluations. Specifically, it explores possibilities of the use of radial basis function surrogate models in sampling methods based on the Metropolis-Hastings algorithm. Furthermore, updates of the surrogate model during the sampling process are suggested. The procedure of surrogate model updates and its integration into the sampling algorithm is implemented and supported by numerical experiments.
Název v anglickém jazyce
The use of radial basis function surrogate models for sampling process acceleration in Bayesian inversio
Popis výsledku anglicky
The Bayesian approach provides a natural way of solving engineering inverse problems including uncertainties. The objective is to describe unknown parameters of a mathematical model based on noisy measurements. Using the Bayesian approach, the vector of unknown parameters is described by its joint probability distribution, i.e. the posterior distribution. To provide samples, Markov Chain Monte Carlo methods can be used. Their disadvantage lies in the need of repeated evaluations of the mathematical model that are computationally expensive in the case of practical problems.nnThis paper focuses on the reduction of the number of these evaluations. Specifically, it explores possibilities of the use of radial basis function surrogate models in sampling methods based on the Metropolis-Hastings algorithm. Furthermore, updates of the surrogate model during the sampling process are suggested. The procedure of surrogate model updates and its integration into the sampling algorithm is implemented and supported by numerical experiments.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Electrical Engineering
ISBN
978-3-030-14906-2
ISSN
1876-1100
e-ISSN
1876-1119
Počet stran výsledku
11
Strana od-do
228-238
Název nakladatele
Springer Nature Switzerland AG
Místo vydání
Cham
Místo konání akce
Ostrava
Datum konání akce
11. 11. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—