Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

An abstract inf-sup problem inspired by limit analysis in perfect plasticity and related applications

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F21%3A00545246" target="_blank" >RIV/68145535:_____/21:00545246 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.worldscientific.com/doi/10.1142/S0218202521500330" target="_blank" >https://www.worldscientific.com/doi/10.1142/S0218202521500330</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/S0218202521500330" target="_blank" >10.1142/S0218202521500330</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    An abstract inf-sup problem inspired by limit analysis in perfect plasticity and related applications

  • Popis výsledku v původním jazyce

    This paper is concerned with an abstract inf-sup problem generated by a bilinear Lagrangian and convex constraints. We study the conditions that guarantee no gap between the inf-sup and related sup-inf problems. The key assumption introduced in the paper generalizes the well-known Babuška–Brezzi condition. It is based on an inf-sup condition defined for convex cones in function spaces. We also apply a regularization method convenient for solving the inf-sup problem and derive a computable majorant of the critical (inf-sup) value, which can be used in a posteriori error analysis of numerical results. Results obtained for the abstract problem are applied to continuum mechanics. In particular, examples of limit load problems and similar ones arising in classical plasticity, gradient plasticity and delamination are introduced.

  • Název v anglickém jazyce

    An abstract inf-sup problem inspired by limit analysis in perfect plasticity and related applications

  • Popis výsledku anglicky

    This paper is concerned with an abstract inf-sup problem generated by a bilinear Lagrangian and convex constraints. We study the conditions that guarantee no gap between the inf-sup and related sup-inf problems. The key assumption introduced in the paper generalizes the well-known Babuška–Brezzi condition. It is based on an inf-sup condition defined for convex cones in function spaces. We also apply a regularization method convenient for solving the inf-sup problem and derive a computable majorant of the critical (inf-sup) value, which can be used in a posteriori error analysis of numerical results. Results obtained for the abstract problem are applied to continuum mechanics. In particular, examples of limit load problems and similar ones arising in classical plasticity, gradient plasticity and delamination are introduced.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-11441S" target="_blank" >GA19-11441S: Efektivní a spolehlivé výpočetní techniky pro limitní analýzu a přírůstkové metody v geotechnické stabilitě</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematical Models and Methods in Applied Sciences

  • ISSN

    0218-2025

  • e-ISSN

    1793-6314

  • Svazek periodika

    31

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    SG - Singapurská republika

  • Počet stran výsledku

    31

  • Strana od-do

    1593-1623

  • Kód UT WoS článku

    000691623100003

  • EID výsledku v databázi Scopus

    2-s2.0-85108244281