Tamoxifen in the Mouse Brain: Implications for Fate-Mapping Studies Using the Tamoxifen-Inducible Cre-loxP System
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378041%3A_____%2F16%3A00469033" target="_blank" >RIV/68378041:_____/16:00469033 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61388971:_____/16:00469033 RIV/00216208:11130/16:10332513
Výsledek na webu
<a href="http://dx.doi.org/10.3339/fncel.2016.00243" target="_blank" >http://dx.doi.org/10.3339/fncel.2016.00243</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3339/fncel.2016.00243" target="_blank" >10.3339/fncel.2016.00243</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tamoxifen in the Mouse Brain: Implications for Fate-Mapping Studies Using the Tamoxifen-Inducible Cre-loxP System
Popis výsledku v původním jazyce
The tamoxifen (TX)-inducible Cre-loxP system is used to overcome gene targeting pre-adult lethality, to modify a specific cell population at desired time, and to visualize cells in fate-mapping studies. Here we focused on TX degradation, because for fate-mapping studies, the period during which TX or its metabolites remain in the CNS, is essential. Additionally, we aimed to define the TX administration scheme enabling the maximal recombination together with minimal animal mortality. The time window between TX injection and the start of experiments should be large enough to allow complete degradation of TX and its metabolites. Otherwise, these substances could promote an undesired recombination, leading to data misinterpretation. We defined the time window, allowing the complete degradation of TX and its metabolites in the mouse brain after i.p. TX injection. We determined the activity of TX and its metabolites in vitro, and a minimal effective concentration of the most potent metabolite 4-OH-TX causing recombination in vivo. For this purpose, we analyzed the recombination rate in NG2-tdTomato mice, in which TX administration triggers the expression of red fluorescent protein in NG2-expressing cells, and employed a liquid chromatography- mass spectrometry, to determine the concentration of studied substances in the brain. Our results showed that TX and its metabolites were degraded within 8 days in young C57BL/6J mice, while the age-matched FVB mice displayed more effective degradation. Moreover, aged C57BL/6J mice were unable to metabolize all substances within 8 days. The lowering of initial TX dose leads to a significantly faster degradation of all studied substances. A disruption of the blood-brain barrier caused no concentration changes of any TX metabolites in the ipsilateral hemisphere. Taken together, we showed that TX metabolism in mouse brains is age-, strain- and dose-dependent, and these factors should be taken into account in the experimental design.
Název v anglickém jazyce
Tamoxifen in the Mouse Brain: Implications for Fate-Mapping Studies Using the Tamoxifen-Inducible Cre-loxP System
Popis výsledku anglicky
The tamoxifen (TX)-inducible Cre-loxP system is used to overcome gene targeting pre-adult lethality, to modify a specific cell population at desired time, and to visualize cells in fate-mapping studies. Here we focused on TX degradation, because for fate-mapping studies, the period during which TX or its metabolites remain in the CNS, is essential. Additionally, we aimed to define the TX administration scheme enabling the maximal recombination together with minimal animal mortality. The time window between TX injection and the start of experiments should be large enough to allow complete degradation of TX and its metabolites. Otherwise, these substances could promote an undesired recombination, leading to data misinterpretation. We defined the time window, allowing the complete degradation of TX and its metabolites in the mouse brain after i.p. TX injection. We determined the activity of TX and its metabolites in vitro, and a minimal effective concentration of the most potent metabolite 4-OH-TX causing recombination in vivo. For this purpose, we analyzed the recombination rate in NG2-tdTomato mice, in which TX administration triggers the expression of red fluorescent protein in NG2-expressing cells, and employed a liquid chromatography- mass spectrometry, to determine the concentration of studied substances in the brain. Our results showed that TX and its metabolites were degraded within 8 days in young C57BL/6J mice, while the age-matched FVB mice displayed more effective degradation. Moreover, aged C57BL/6J mice were unable to metabolize all substances within 8 days. The lowering of initial TX dose leads to a significantly faster degradation of all studied substances. A disruption of the blood-brain barrier caused no concentration changes of any TX metabolites in the ipsilateral hemisphere. Taken together, we showed that TX metabolism in mouse brains is age-, strain- and dose-dependent, and these factors should be taken into account in the experimental design.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
FH - Neurologie, neurochirurgie, neurovědy
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Frontiers in Cellular Neuroscience
ISSN
1662-5102
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
ost
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
000385762900001
EID výsledku v databázi Scopus
2-s2.0-84992529991