Regenerative capacity of neural tissue scales with changes in tissue mechanics post injury
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378041%3A_____%2F23%3A00603819" target="_blank" >RIV/68378041:_____/23:00603819 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0142961223004015?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0142961223004015?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.biomaterials.2023.122393" target="_blank" >10.1016/j.biomaterials.2023.122393</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Regenerative capacity of neural tissue scales with changes in tissue mechanics post injury
Popis výsledku v původním jazyce
Spinal cord injuries have devastating consequences for humans, as mammalian neurons of the central nervous system (CNS) cannot regenerate. In the peripheral nervous system (PNS), however, neurons may regenerate to restore lost function following injury. While mammalian CNS tissue softens after injury, how PNS tissue mechanics changes in response to mechanical trauma is currently poorly understood. Here we characterised mechanical rat nerve tissue properties before and after in vivo crush and transection injuries using atomic force microscopy-based indentation measurements. Unlike CNS tissue, PNS tissue significantly stiffened after both types of tissue damage. This nerve tissue stiffening strongly correlated with an increase in collagen I levels. Schwann cells, which crucially support PNS regeneration, became more motile and proliferative on stiffer substrates in vitro, suggesting that changes in tissue stiffness may play a key role in facilitating or impeding nervous system regeneration.
Název v anglickém jazyce
Regenerative capacity of neural tissue scales with changes in tissue mechanics post injury
Popis výsledku anglicky
Spinal cord injuries have devastating consequences for humans, as mammalian neurons of the central nervous system (CNS) cannot regenerate. In the peripheral nervous system (PNS), however, neurons may regenerate to restore lost function following injury. While mammalian CNS tissue softens after injury, how PNS tissue mechanics changes in response to mechanical trauma is currently poorly understood. Here we characterised mechanical rat nerve tissue properties before and after in vivo crush and transection injuries using atomic force microscopy-based indentation measurements. Unlike CNS tissue, PNS tissue significantly stiffened after both types of tissue damage. This nerve tissue stiffening strongly correlated with an increase in collagen I levels. Schwann cells, which crucially support PNS regeneration, became more motile and proliferative on stiffer substrates in vitro, suggesting that changes in tissue stiffness may play a key role in facilitating or impeding nervous system regeneration.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biomaterials
ISSN
0142-9612
e-ISSN
1878-5905
Svazek periodika
303
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
122393
Kód UT WoS článku
001113684100001
EID výsledku v databázi Scopus
2-s2.0-85178650755