QSAR - Searching for a relationship between a compound’s structure and its biological aktivity. Advances in Chemical Biology
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378050%3A_____%2F19%3A00503195" target="_blank" >RIV/68378050:_____/19:00503195 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
QSAR - Searching for a relationship between a compound’s structure and its biological aktivity. Advances in Chemical Biology
Popis výsledku v původním jazyce
Quantitative structure-activity relationship (QSAR) modeling is one of the most popular techniques of virtual screening able to predict the biological activity of small-molecular compounds. Using QSAR classification models, a compound can be labeled as active or inactive on a target, while regression models try to determine its exact activity value. In order to reveal the structure-activity relationships, almost any combination of common machine learning methods (e.g., Support Vector Machines, Random Forest, Neural Networks etc.) with various types of structure descriptors (e.g., physicochemical properties, structural keys, binary fingerprints, etc.) can be utilized. QSAR models are generally fast and are considered as reliable, providing that a correct approach to their validation and an application domain assessment are employed. Nowadays, the techniques of QSAR modeling represent a common part of computational drug design workflows used to detect new biologically active compounds, elucidate their side effects, or assess their potential toxicity risks.
Název v anglickém jazyce
QSAR - Searching for a relationship between a compound’s structure and its biological aktivity. Advances in Chemical Biology
Popis výsledku anglicky
Quantitative structure-activity relationship (QSAR) modeling is one of the most popular techniques of virtual screening able to predict the biological activity of small-molecular compounds. Using QSAR classification models, a compound can be labeled as active or inactive on a target, while regression models try to determine its exact activity value. In order to reveal the structure-activity relationships, almost any combination of common machine learning methods (e.g., Support Vector Machines, Random Forest, Neural Networks etc.) with various types of structure descriptors (e.g., physicochemical properties, structural keys, binary fingerprints, etc.) can be utilized. QSAR models are generally fast and are considered as reliable, providing that a correct approach to their validation and an application domain assessment are employed. Nowadays, the techniques of QSAR modeling represent a common part of computational drug design workflows used to detect new biologically active compounds, elucidate their side effects, or assess their potential toxicity risks.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1220" target="_blank" >LO1220: CZ-OPENSCREEN: Národní infrastruktura chemické biologie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Advances in Chemical Biology
ISBN
978-80-88011-03-3
Počet stran výsledku
9
Strana od-do
187-196
Počet stran knihy
210
Název nakladatele
OPTIO CZ
Místo vydání
Praha
Kód UT WoS kapitoly
—